一阶线性微分方程的积分因子法

对于一阶线性微分方程\[y’+p(x)y=f(x)\]来说,一般教材采用常数变易来导出解的公式。事实上,我们也可以使用积分因子法来求解这类方程。

对于一阶线性微分方程\[y’+p(x)y=f(x)\]来说,一般教材采用常数变易来导出解的公式。事实上,我们也可以使用积分因子法来求解这类方程。

积分因子法的基本思想就是,将方程乘以 一个函数,将方程的右边变成一个函数的导数,然后两边积分,就可以求出未知函数了。

对于 一阶线性微分方程来说,积分因子是比较好找的,因为含有未知函数的就只有两项,导数含有两项的就是两个函数的乘积了。

我们假设方程有一个积分因子\(\mu(x)\),我们现在将它找出来。将它乘以方程两边,我们得到

\[\mu(x)y’+\mu(x)p(x)y=\mu(x)f(x)\]

因为第一项是 \(\mu(x)y’\),所以右边只能是 \((\mu(x)y)’\),利用乘积求导法则,我们知道 \(\mu(x)p(x)=\mu'(x)\),利用分离变量法,可以求出它的一个解

\[\mu(x)=e^{\int p(x)dx}\]

也就是说,这个积分因子是\( e^{\int p(x)dx}\),将它乘以方程两边,我们得到

\[( e^{\int p(x)dx} y)’= e^{\int p(x)dx} f(x)\]

两边积分 ,我们得到

\[ e^{\int p(x)dx} y =\int e^{\int p(x)dx} f(x) +C \]

再将两边乘以 \( e^{-\int p(x)dx} \),就得到了方程的解

\[ y = e^{-\int p(x)dx} \left(\int e^{\int p(x)dx} f(x) +C\right) \]

这个公式 ,与我们用常数变易法求得的公式是一致的。

降阶法求二阶常系数线性微分方程的解

对于二阶常系数线性微分方程,不管是齐次的方程还是非齐次的方程,都可以用降阶法来求解。这种方法,优点有两个,第一个优点是,不管方程是齐次的还是非齐次的,都可以用统一的方法来求解;第二个优点是,对于非齐次方程来说,不管非齐次项具有什么形式,与特征根有什么关系,处理方法是一样的。缺点就是积分的计算量比较大。

对于二阶常系数线性微分方程,不管是齐次的方程还是非齐次的方程,都可以用降阶法来求解。这种方法,优点有两个,第一个优点是,不管方程是齐次的还是非齐次的,都可以用统一的方法来求解;第二个优点是,对于非齐次方程来说,不管非齐次项具有什么形式,与特征根有什么关系,处理方法是一样的。缺点就是积分的计算量比较大。

我们用例子来说明,怎么样用降阶法来求二阶常系数线性微分方程。

例1:求解微分方程

\[y^{\prime\prime}-5y’+6y=xe^x\]

解:方程可以写成

\[\begin{align*}& y ^{\prime\prime} -2y’-3y’+6y=xe^x \\ \Longrightarrow& (y ^{\prime\prime} -2y’)-3(y’-2y)=xe^x \\ \Longrightarrow & (y’-2y)’-3(y’-2y)=xe^x\\ \end{align*}\]

这时候,如果令 \(z= y’-2y \),则方程变为

\[z’-3z=xe^x\]

这是一个一阶线性微分方程,我们知道它的解为

\[\begin{align*}z&=e^{3x}\left(\int e^{-3x}xe^xdx+ C_1\right)\\ &= C_1e^{3x}-\frac{1}{2}xe^{-x}-\frac{1}{4}e^{-x}\end{align*}\]

代回到原来变量,我们有

\[y’-2y= C_1e^{3x}-\frac{1}{2}xe^{-x}-\frac{1}{4}e^{-x} \]

这依然是一个一阶线性微分方程,它的解为

\[\begin{align*}y&=e^{2x}\left(\int e^{-2x}( C_1e^{3x}-\frac{1}{2}xe^{-x}-\frac{1}{4}e^{-x} )dx+C_2\right)\\ &=C_1e^{3x}+C_2e^{2x}+\frac{1}{6}xe^{-3x}+\frac{1}{18}e^{-3x}+\frac{1}{12}e^{-3x}\\ &= C_1e^{3x}+C_2e^{2x}+\frac{1}{6}xe^{-3x}+ \frac{5}{36}e^{-3x}\end{align*}\]

这里我们演示了如何利用降阶法来求二阶常系数线性微分方程的解。事实上,如果齐次微分方程对应的特征方程 \(r^2+pr+q=0\) 有两个特征根 \(\lambda_1,\lambda_2\) (不管是不是重根,是不是实根),则微分方程

\[y^{\prime\prime}+py’+qy=f(x)\]

可以写成

\[\qquad y^{\prime\prime}-(\lambda_1+\lambda_2)y’+\lambda_1\lambda_2y=f(x) \]

\[\Longrightarrow(y’-\lambda_2y)’-\lambda_1( y’-\lambda_2y )=f(x)\]

这时候,我们只需要令 \(z= y’-\lambda_2y \),就可以将二阶方程化成一阶方程了。这就是降阶法的基本思想。

我们再来看一看重根和复根的情形。

例2:求方程的通解:

\[y^{\prime\prime}-4y’+4y=e^{2x}\sin x\]

解:方程的特征方程为 \(r^2-4r+4=0\),它有重特征根 \(\lambda_{1,2}=2\),所以方程可以写成\[(y’-2y)’-2(y’-2y)= e^{2x}\sin x \]

作代换 \(z= y’-2y \),则方程变为 \(z’-2z= e^{2x}\sin x \),它有解

\[\begin{align*}z&=e^{2x}\left(\int e^{-2x} e^{2x}\sin x dx+C_1\right)\\ &=C_1e^{2x}-e^{2x}\cos x\end{align*}\]

代回原来变量,我们得到

\[y’-2y= C_1e^{2x}-e^{2x}\cos x \]

它的解为

\[\begin{align*}y&=e^{2x}\left(\int e^{-2x}( C_1e^{2x}-e^{2x}\cos x )dx+C_2\right)\\ &=C_1xe^{2x}+C_2e^{2x}-e^{2x}\sin x\end{align*}\]

例3:求方程的通解:

\[y^{\prime\prime}+4y=e^x\]

解:这个方程的特征方程为 \(\lambda_{1,2}=\pm 2i\),所以方程可以分解成

\[(y’-2iy)’+2i(y’-2iy)=e^x\]

作代换 \(z= y’-2iy \),则方程变为 \(z’+2iz=e^x\),它的解为

\[\begin{align*}z&=e^{-2ix}\left(\int e^{2ix}e^xdx+C_1 \right) \\ &=C_1 e^{-2ix} +\frac{1 }{1+2i} e^x \end{align*}\]

回到原来变量,我们有

\[y-2iy= C_1 e^{-2ix} +\frac{1 }{1+2i} e^x \]

它的解为

\[\begin{align*}y&= e^{2ix}\left(\int e^{-2ix}\left( C_1 e^{-2ix} +\frac{1 }{1+2i} e^x dx\right)+C_2 \right)\\ &=C_1e^{-2ix}+C_2e^{2ix}+\frac{1}{5}e^x \end{align*}\]

这里的\(C_1\) 与第一个等式的 \(C_1\) 相差一个复数常数。应用欧拉公式(Euler 公式)\(e^{ix}=\cos x+i\sin x\),上式变成

\[\begin{align*}y&=C_1(\cos 2x-i\sin 2x)+C_2(\cos 2x+i\sin 2x)+ \frac{1}{5}e^x \\ &=(C_1+C_2)\cos 2x+i(C_2-C_1)\sin2x+ \frac{1}{5}e^x \\&=\tilde{C_1}\cos 2x+\tilde{C_2}\sin 2x+ \frac{1}{5}e^x \end{align*}\]

我们仍然用 \(C_1,C_2\)表示 \(\tilde{C_1},\tilde{C_2}\),那么方程的通解为

\[y=C_1\cos2x+C_2\sin2x+ \frac{1}{5}e^x \]

从以上的计算我们可以看出,不管特征根是单根、重根还是复根,处理的方式是一样的。而且我们也看出,我们也不需要考虑非齐次项的形式。这与我们通常采用的待定系数法有根本的区别。

这种降阶法可以应用到高阶常系数线性微分方程。事实上,这种降阶法也称之为算子法或者算子分解法。算子法更一般的处理方式,我们就不展开论述了。

一阶常系数齐次微分方程组求解总结

如果一阶微分方程组的系数都是常数,那么微分方程组可以写成矩阵的形式

\[{\bf x}’=A{\bf x}\]

对于这样的微分方程组,它的解可以分为三种情况。

  1. 如果矩阵 \(A\) 有相异的特征值  \(\lambda_1, \lambda_2,\cdots,\lambda_n\), 其对应的特征向量为 \({\bf \xi}_1,{\bf \xi}_2,\cdots, {\bf \xi}_n \),那么它的通解为\[{\bf x}=c_1{\bf \xi}_1e^{\lambda_1t}+c_2{\bf \xi}_2e^{\lambda_2t}+\cdots+c_1{\bf \xi}_ne^{\lambda_nt}\]
  2. 如果矩阵 \(A\) 有一对复特征值 \(\alpha\pm i\beta\),其对应的特征向量为 \({\bf a}\pm i{b}\),那么微分方程的通解中含有项\[c_1e^{\alpha t}({\bf a}\cos \beta t-{\bf b}\sin \beta t)+c_2e^{\alpha t}({\bf a}\sin \beta t+{\bf b}\cos\beta t)\]
  3. 如果矩阵 \(A\) 有\(k\)重特征值 \(\lambda\),那么情况比较复杂,我们只处理二重根的情况
    • \(\lambda\) 有两个线性无关的特征向量 \(\xi_1,\xi_2\),那么跟第一种情况类似,方程的通解中含有项 \[c_1e^{\lambda t}\xi_1+c_2e^{\lambda t}\xi_2\]
    • 如果对应 \(\lambda\)  的特征向量只有一个 \(\xi\),则通过解方程组 \((A-\lambda I)\eta=\xi\) 得到向量 \(\eta\),则方程的通解中含有\[C_1e^{\lambda t}\xi+c_2e^{\lambda t}(t\xi+\eta)\]

 我们用两个方程的方程组的例子来说明这些结论。

例1, 求微分方程组

\[{\bf x}’=\begin{pmatrix}1&1\\ 4& 1\end{pmatrix}{\bf x}\]

解:因为 \[|A-\lambda I| =\begin{vmatrix}1-\lambda& 1\\ 4& 1-\lambda\end{vmatrix}=(1-\lambda)^2-4=\lambda^2-2\lambda-3=(\lambda-3)(\lambda+1)\]

所以特征值为 \(\lambda_1=3, \lambda_2=-1\)。

当 \(\lambda_1=3\) 时,

\[A-\lambda I =\begin{pmatrix} -2& 1\\ 4& -2\end{pmatrix}\sim\begin{pmatrix}-2&1\\ 0& 0\end{pmatrix}\]

所以我们得到特征向量为 \(\xi_1=\begin{pmatrix} 1\\ 2\end{pmatrix}\)。

当 \(\lambda_2=-1\) 时,可以得到特征向量为  \(\xi_2=\begin{pmatrix} 1\\ -2\end{pmatrix}\)。

所以方程组的通解为 

\[{\bf x}=c_1e^{3t}\begin{pmatrix} 1\\ 2\end{pmatrix}+c_2e^{-t}\begin{pmatrix} 1\\ -2\end{pmatrix}. \]

 

例2,解方程组

\[{\bf x}’=\begin{pmatrix}3&-2\\ 4&-1\end{pmatrix}{\bf x}\]

解:我们先求特征值

\[|A-\lambda I|=\begin{pmatrix}3-\lambda& -2\\ 4& -1-\lambda\end{pmatrix}=(3-\lambda)(-1-\lambda)+8=\lambda^2-2\lambda+5\]

所以我们得到特征值为 \(\lambda_{1,2}=1\pm2 i\),将\(\lambda_{1}=1+2 i\) 代入 \(A-\lambda I\),  我们得到

\[A-\lambda I=\begin{pmatrix}2-2i& -2\\ 4& -2-2i\end{pmatrix}\sim \begin{pmatrix}1-i& -1\\ 0&0\end{pmatrix}\]

从而我们得到其中一个特征向量为 \(\begin{pmatrix}1\\ 1-i\end{pmatrix}=\begin{pmatrix}1\\ 1\end{pmatrix}+i\begin{pmatrix}0\\ -1\end{pmatrix}\)。所以方程的通解为

\[\begin{align}{\bf x}&=c_1e^{t}\left(\begin{pmatrix}1\\ 1\end{pmatrix}\cos 2t-\begin{pmatrix}0\\ -1\end{pmatrix}\sin 2t\right)+c_2e^{t}\left(\begin{pmatrix}1\\ 1\end{pmatrix}\sin 2t+\begin{pmatrix}0\\ -1\end{pmatrix}\cos 2t\right)\\ &= c_1e^{t}\begin{pmatrix}\cos 2t\\ \cos 2t+\sin 2t\end{pmatrix}+c_2e^{t}\begin{pmatrix}\sin 2t\\ \sin 2t-\cos 2t\end{pmatrix}\end{align}\]

 

例3,解方程组

\[{\bf x}’=\begin{pmatrix}3&-4\\ 1& -1\end{pmatrix}{\bf x}\]

解:先求矩阵的特征值

\[|A-\lambda I|=\begin{vmatrix}3-\lambda& -4\\ 1& -1-\lambda\end{vmatrix}=\lambda^2-2\lambda+1=(\lambda-1)^2.\]

所以我们得到二重特征值 \(\lambda_{1,2}=1\)。我们再来求特征向量,

\[A-\lambda I=\begin{pmatrix}2&-4\\ 1&-2\end{pmatrix}\sim \begin{pmatrix}1&-2\\ 0&0\end{pmatrix}.\]

从而我们只能得到一个特征向量 \(\xi=\begin{pmatrix}2\\ 1\end{pmatrix}\)。所以方程组的一个线性无关的解为 \(e^t\begin{pmatrix}2\\ 1\end{pmatrix}\),为要求得另一个解,我们解线性方程组 \[(A-\lambda I) \eta=\xi,\] 也就是求解

\[\begin{pmatrix}2&-4\\ 1&-2\end{pmatrix}\eta=\begin{pmatrix}2\\ 1\end{pmatrix}\]

这个方程组的一个解为 \(\eta=\begin{pmatrix}1\\ 0\end{pmatrix}\),所以我们可以得到微分方程组的通解为 

\[{\bf x}=C_1e^t\xi+C_2e^t(t\xi+\eta)=C_1e^t\begin{pmatrix}2\\ 1\end{pmatrix}+C_2e^t\begin{pmatrix}2t+1\\ t\end{pmatrix}\]

二阶微分方程的常数变易法

所谓常数变易法,就是在求得相应齐次方程的通解后,将齐次方程的通解里的任意常数用关于自变量的任意函数代替,然后代入到原非齐次方程里去,从而求得非齐次方程的特解的一种方法。

我们都知道一阶线性微分方程的常数变易法,那是我们的高等数学里学到的一阶线性微分方程的公式的由来。其实,对于任何高阶线性微分方程,我们都可以用常数变易法来求得非齐次方程的通解。 这里我们仅讲述二阶方程的常数变易法,更高阶的方程可以用同样的方法求得方程的通解。

所谓常数变易法,就是在求得相应齐次方程的通解后,将齐次方程的通解里的任意常数用关于自变量的任意函数代替,然后代入到原非齐次方程里去,从而求得非齐次方程的特解的一种方法。由非齐次方程的解的定理,我们只需要将齐次方程的通解加上非齐次方程的一个特解,就得到了齐次方程的通解。我们在求一阶非齐次方程的通解的过程中,用的就是这一方法。现在我们将它推广到二阶去, 为叙述简便, 我们只考虑常系数方程的情形。

考虑二阶微分方程
\[y”+py’+qy=f(x),\]
这里 \(p, q\) 都是常数, 其对应的齐次微分方程为
\[y”+py’+qy=0.\]

现在设我们已知齐次微分方程 \(y”+py’+qy=0\) 的通解为
\[y=c_1y_1(x)+c_2y_2(x).\]
我们将其中的任意常数 \(c_1\) 和 \(c_2\) 用关于 \(x\) 的任意函数 \(u_1(x)\) 和 \(u_2(x)\) 代替,来找一个非齐次方程的特解,此特解具有形式
\[y_p(x)=u_1(x)y_1(x)+u_2(x)y_2(x).\]
将此式对 \(x\) 求导,可以得到
\[y’_p(x)=(u’_1(x)y_1(x)+u’_2(x)y_2(x))+(u_1(x)y’_1(x)+u_2(x)y’_2(x)).\]
因为函数 \(u_1(x)\) 和 \(u_2(x)\) 是任意的,所以我们可以取函数 \(u_1(x)\) 和 \(u_2(x)\) 使得
\[u’_1(x)y_1(x)+u’_2(x)y_2(x)=0\]
从而使方程得到简化。再对 \(y’_p\) 求导并应用上述条件,我们得到了
\[y”_p(x)=u’_1(x)y’_1(x)+u’_2(x)y’_2(x)+u_1(x)y”_1(x)+u_2(x)y”_2(x)\]

代回到原方程 \(y”_p(x)+py’_p(x)+qy_p(x)=f(x)\),我们得到了
\[\begin{align}
& u’_1(x)y’_1(x)+u’_2(x)y’_2(x)+u_1(x)y”_1(x)+u_2(x)y”_2(x) \\ &\quad +p((u_1(x)y’_1(x)+u_2(x)y’_2(x))+q(u_1(x)y_1(x)+u_2(x)y_2(x))\\
&=f(x).\end{align}\]
因为 \(y_1,y_2\) 是齐次方程的解,所以
\[u_1(x)y”_1(x)+pu_1(x)y’_1(x)+qu_1(x)y_1(x)=0,\]及
\[u_2(x)y”_2(x)+pu_2(x)y’_2(x)+qu_2(x)y_2(x)=0.\]
所以 \(u_1(x)\) 和 \(u_2(x)\) 满足方程
\[u’_1(x)y’_1(x)+u’_2(x)y’_2(x)=f(x).\]
以及限制条件
\[u’_1(x)y_1(x)+u’_2(x)y_2(x)=0.\]

我们解联立方程
\[\begin{cases}
u’_1(x)y’_1(x)+u’_2(x)y’_2(x)=f(x),\\
u’_1(x)y_1(x)+u’_2(x)y_2(x)=0.
\end{cases}\]就可以求出方程的一个特解。

我们来看一个例子。

例:求方程
\[y”+4y=2\tan x\]
的通解。

解:齐次方程的特征方程为
\[r^2+4=0\]
特征根为 \(r_{1,2}=\pm 2i\) 。所以齐次方程的通解为 \(Y=c_1\sin 2x + c_2 \cos 2x\) 。现在我们用常数变易法来求方程的一个特解。

设 \(y_p=u_1(x)\sin 2x + u_2(x)\cos 2x\) 为方程的一个特解,\(u_1(x)\) 和 \(u_2(x)\) 满足条件
\[\begin{cases}
2u’_1(x)\cos 2x-u’_2(x)\sin 2x=2\tan x,\\
u’_1(x)\sin 2x+u’_2(x)\cos 2x=0.
\end{cases}\]

解此方程,用线性代数的方法,克莱姆法则。系数行列式为
\[D=\begin{vmatrix}
2\cos 2x&-2\sin2x\\
\sin2x&\cos2x
\end{vmatrix}=2.\]

\[D_1=\begin{vmatrix}
2\tan x&-2\sin2x\\
0&\cos2x
\end{vmatrix}=2\tan x\cos2x.\]

\[D_2=\begin{vmatrix}
2\cos 2x&2\tan x\\
\sin2x&0
\end{vmatrix}=-2\tan x\sin2x.\]

所以我们得到
\[\begin{cases}
u’_1(x)=\tan x\cos2x\\
u’_2(x)=-\tan x\sin2x
\end{cases}\]
积分可得
\[
\begin{cases}
u_1(x)=\displaystyle\frac{1}{2}\ln(\sin^2x-1)+\sin^2x\\
u_2(x)=\displaystyle\frac{1}{2}\sin2x-x
\end{cases}
\]

所以微分方程的通解为
\[
y=c_1\cos2x+c_2\sin2x+\left(\displaystyle\frac{1}{2}\ln(\sin^2x-1)+\sin^2x\right)\cos2x+\left(\displaystyle\frac{1}{2}\sin2x-x\right)\sin2x
\]

二阶常系数微分方程求解总结

这篇文章我们总结了二阶微分方程的求解方法。对于齐次方程,我们只需要知道特征方程的特征根的形式,我们就可以知道方程的解。对于非齐次方程,我们根据非齐次项的不同表达形式,给出方程的特解的不同形式。

二阶常系数微分方程 \(y^{\prime\prime}+p y’+q y=f(x)\),其中 \(p,q\)都是常数.

对于非齐次方程的解,我们有一般的理论. 即,如果 \(y_h\) 是齐次方程 \(y^{\prime\prime}+p y’+q y=0\) 的解, 而 \(y_p\) 是非齐次方程 \(y”+p y’+q y=f(x)\) 的一个特解,那么非齐次方程 \(y^{\prime\prime}+p y’+q y=f(x)\) 的通解为 \(y=y_h+y_p\)

情形1: \(f(x)=0\), 就是所谓的齐次微分方程. 我们先求解它的特征方程,就是先求解
\[r^2+pr+q=0\]
然后分三种情况:

  • 如果 \(r_1\ne r_2\) 且都是实数,那么方程的通解为\[y=C_1e^{r_1x}+C_2e^{r_2x}\]
  • 如果 \(r_1= r_2\) 是重根, 那么方程的通解为 \[y=(C_1+C_2x)e^{rx}\]
  • 如果 \(r_{1,2}=\alpha\pm i\beta\) 是一对复根, 那么方程的通解为\[y=e^{\alpha x}(C_1\cos(\beta x)+C_2\sin(\beta x))\]

情形2: \(f(x)=P_m(x)e^{ax}\). 其中 \(P_m(x)\)为 \(m\) 次多项式. 这种情形,我们也分三种情况来求特解:

  • 如果 \(a\) 不是特征方程 \(r^2+pr+q=0\) 的根, 则可取方程的特解为\[y_p=Q_m(x)e^{ax}\]
    其中\(Q_m(x)=a_m x^m+a_{m-1}x^{m-1}+\cdots+a_1x+a_0\) 为 \(m\) 次多项式.然后代入方程求出 \(Q_m(x)\).
  • 如果 \(a\) 是特征方程 \(r^2+pr+q=0\) 的单根, 则可取方程的特解为\[y_p=xQ_m(x)e^{ax}\]
  • 如果 \(a\) 是特征方程 \(r^2+pr+q=0\) 的重根, 则可取方程的特解为\[y_p=x^2Q_m(x)e^{ax}\]

情形3: \(f(x)=P_m(x)e^{\alpha x}\cos(\beta x)\) 或者 \(f(x)=P_m(x)e^{\alpha x}\sin(\beta x)\). 其中 \(P_m(x)\)为 \(m\) 次多项式. 这种情形,我们分两种情况来求特解:

  • 如果 \(\alpha+i\beta\) 不是特征方程 \(r^2+pr+q=0\) 的根, 则可取方程的特解为\[y_p=e^{\alpha x}(C_1Q_m(x)\sin(\beta x)+C_2R_m{x}\cos{\beta x})\] 其中 \(Q_m(x)\) 和 \(R_m(x)\) 都是\(m\) 次多项式.
  • 如果 \(\alpha+i\beta\) 是特征方程 \(r^2+pr+q=0\) 的根, 则可取方程的特解为\[y_p=xe^{\alpha x}(C_1Q_m(x)\sin(\beta x)+C_2R_m{x}\cos{\beta x}).\]

我们来看一个例子:

例 1: 求方程的通解
\[y^{\prime\prime}-y’-2y=2e^{-x}\]
解: 我们先求出齐次方程的通解. 齐次方程的特征方程为
\[r^2-r-2=0\]
它的两个解为 \(r_1=-1, r_2=2\), 所以齐次方程的通解为
\[y_h=C_1e^{-x}+C_2e^{2x}.\]

接下来,我们来找出非齐次方程的一个特解. 这里 \(a=-1, P_m(x)=2\). \(P_m(x)\) 是 \(0\) 次多项式, \(a=-1\) 是特征方程的单根,所以我们假设特解为\[y_p=Axe^{-x}\]
代入到方程中去
\[y^{\prime\prime}_p-y_p’-2y_p=2e^{-x}\]
我们可以得到
\[-3Ae^{-x}=2e^{-x}\]
从而 \(A=-\frac{2}{3}\), 所以 \(y_p=-\frac{2}{3}xe^{-x}\) , 所以方程的通解为
\[y=C_1e^{-x}+C_2e^{2x}-\frac{2}{3}xe^{-x}\]