行列式(determinant)的计算技巧

对于阶数不高的,一般的数字行列式,最方便有效的计算方式是降阶法,或者说是初等变换+行列式展开。另外,将行列式化成三角形也是常用的一个方法。有些数字行列式具有一定的规律,我们可以利用这些规律来较快速地计算出它的值。

我们来看一些常见的数字行列式的例子。

例:计算行列式
\[\begin{vmatrix}
1&2&3&4\\
2&3&4&1\\
3&4&1&2\\
4&1&2&3
\end{vmatrix}\]
这个行列式,直接用降阶法,或者用化成三角形的方式,计算量较大。但是这个行列式有一些规律我们可以利用。我们看到,每一行或者每一列的元素都是一样的,只是排列顺序不同。或者可以这样说,它们的和都是相同的数字。所以对这个行列式,我们可以将所有的行(或者列)加到同一行(列)去,然后提出一个因子,再做初等变换,就容易多了。我们来看它的解法。

解:将行列式所有的列加到第一列去,我们得到了
\[\begin{vmatrix}
1&2&3&4\\
2&3&4&1\\
3&4&1&2\\
4&1&2&3
\end{vmatrix}=
\begin{vmatrix}
10&2&3&4\\
10&3&4&1\\
10&4&1&2\\
10&1&2&3
\end{vmatrix}\]
将第一列提出因子10, 然后将每一行减去第一行,我们得到了
\[
\begin{vmatrix}
10&2&3&4\\
10&3&4&1\\
10&4&1&2\\
10&1&2&3
\end{vmatrix}=
10\begin{vmatrix}
1&2&3&4\\
1&3&4&1\\
1&4&1&2\\
1&1&2&3
\end{vmatrix}=
10\begin{vmatrix}
1&2&3&4\\
0&1&1&-3\\
0&2&-2&-2\\
0&-1&-1&-1
\end{vmatrix}\]
按第一行展开,然后将第一行加到第三行,乘以\(-2\)加到第二行,得到了
\[10\begin{vmatrix}
1&1&-3\\
2&-2&-2\\
-1&-1&-1
\end{vmatrix}=
10\begin{vmatrix}
1&1&-3\\
0&-4&4\\
0&0&-4
\end{vmatrix}=160\]

Posted in 线性代数.

发表评论

电子邮件地址不会被公开。 必填项已用*标注