什么是Related Rates(相关变化率)?怎么求?

AP Calculus 里面,Related rates 这一部分考得比较多。大学里面的微积分课程,这一部分也经常是考察的重点。 很多同学不能理解这里面的概念,也不知道怎么把它转化成数学问题。 现在我就这一部分进行解答。 那什么是Related rates 呢? 举例来说吧。我们知道圆的面积 \(A=\pi r^2\),如果这个半径是根据时间变化的,那么很显然,面积也根据时间变化。变化率其实就是导数,如果我们知道半径的变化率(就是半径关于时间的导数) \(\frac{dr}{dt}\),那么在某个时刻,面积对于时间的变化率(导数)\(\frac{dA}{dt}\)也就知道了。 从数学的角度来看这个问题,其实就是复合函数的求导法则(Chain Rule)。半径可以看成是时间的函数 \(r=r(t)\),那么面积 \(A(t)=\pi r^2(t)\),由复合函数的求导法则 \(\frac{dA}{dt}=\frac{dA}{dr}\cdot\frac{dr}{dt}=2\pi r \frac{dr}{dt}\)。假如 \(r\) 每秒增加 \(1\) cm, 那么当半径为 \(2\) 的时候的面积的变化率为 \(2\pi \cdot 2\cdot 1=4\pi cm\)。 这种类型的问题,另一个难点是不知道怎么把实际问题转化成数学问题。这就是如何建立数学模型的问题。它的实际困难就是,很多同学并不知道其实变化率就相当于导数。但是从导数的定义就知道,导数就是变化率\(\frac{\Delta y}{\Delta x}\)的极限。当时间间隔足够短的时候,变化率就可以看成是导数。
Posted in 微积分 高等数学, 未分类.