线性代数复习(九):离散动力系统 Dynamical System

离散动力系统,是指由方程 \(\vec{x}_{k+1}=A\vec{x}_k\) 所定义的线性系统。如果我们得到了 \(A\) 的特征值与特征向量,这种系统的一些长期性态也就显示出来了。因为,如果 \(\vec{v}_1,\vec{v}_2,\cdots ,\vec{v}_n\)是 \(A\) 的特征向量,而 \(\vec{x}_0=a_1\vec{v}_1+a_2\vec{v}_2+\cdots a_n\vec{v}_n\), 那么

\[\begin{align}
\vec{x}_{k+1}&=A\vec{x}_{k}=A^2\vec{x}_{k-1}=\cdots=A^{k+1}\vec{x}_0\\
&=A(a_1\vec{v}_1+a_2\vec{v}_2+\cdots a_n\vec{v}_n)\\
&=a_1\lambda_1^{k+1}\vec{v}_1+a_2\lambda_2^{k+1}\vec{v}_2+\cdots a_n\lambda_n^{k+1}\vec{v}_n
\end{align}\]
所以,\(x_k\) 的变化趋势也就明白了。如果某个特征值的绝对值小于 \(1\),那么它所对应的项就趋于 \(0\)。我们这里以二维的情形给出相应的例子。

Posted in 复习与总结, 线性代数 (Linear Algebra) 复习.