一阶线性微分方程的积分因子法

对于一阶线性微分方程\[y’+p(x)y=f(x)\]来说,一般教材采用常数变易来导出解的公式。事实上,我们也可以使用积分因子法来求解这类方程。

积分因子法的基本思想就是,将方程乘以 一个函数,将方程的右边变成一个函数的导数,然后两边积分,就可以求出未知函数了。

对于 一阶线性微分方程来说,积分因子是比较好找的,因为含有未知函数的就只有两项,导数含有两项的就是两个函数的乘积了。

我们假设方程有一个积分因子\(\mu(x)\),我们现在将它找出来。将它乘以方程两边,我们得到

\[\mu(x)y’+\mu(x)p(x)y=\mu(x)f(x)\]

因为第一项是 \(\mu(x)y’\),所以右边只能是 \((\mu(x)y)’\),利用乘积求导法则,我们知道 \(\mu(x)p(x)=\mu'(x)\),利用分离变量法,可以求出它的一个解

\[\mu(x)=e^{\int p(x)dx}\]

也就是说,这个积分因子是\( e^{\int p(x)dx}\),将它乘以方程两边,我们得到

\[( e^{\int p(x)dx} y)’= e^{\int p(x)dx} f(x)\]

两边积分 ,我们得到

\[ e^{\int p(x)dx} y =\int e^{\int p(x)dx} f(x) +C \]

再将两边乘以 \( e^{-\int p(x)dx} \),就得到了方程的解

\[ y = e^{-\int p(x)dx} \left(\int e^{\int p(x)dx} f(x) +C\right) \]

这个公式 ,与我们用常数变易法求得的公式是一致的。

如何求一个向量组的极大无关组,以及如何用极大无关组线性表示其它向量?

我们求向量的极大无关组,并且把其它向量用极大无关组表示的方法和步骤是:

  • 首先将所有列向量排成一个矩阵(如果是行向量, 先转置成列向量);
  • 将所得到的矩阵作初等行变换,化成行最简矩阵;
  • 每个非零行的第一个非零元(\(1\))所在的列,所对应原矩阵的列向量,就是极大无关组的向量,所有这些向量组成了极大无关组;
  • 行最简矩阵的列向量之间的关系,与原矩阵的列向量组之间的关系是一样的。也就是说,极大无关组与其它向量的关系,与行最简矩阵里列向量的关系一样。

这里我们说明一下:极大无关组可以有不同的选择,但是我们这里的选择方式比较直观,不容易出错,而且向量之间的关系一目了然,最容易计算,易于操作。

现在我们举例说明如何使用这种方法。

例:设有向量组

\[\vec{a}_1=\begin{pmatrix}1\\1\\-2\\4\end{pmatrix},\quad \vec{a}_2=\begin{pmatrix}-2\\-1\\0\\1\end{pmatrix},\quad \vec{a}_3=\begin{pmatrix}9\\6\\-6\\9\end{pmatrix},\quad \vec{a}_4=\begin{pmatrix}5\\5\\1\\1\end{pmatrix},\quad \vec{a}_5=\begin{pmatrix}4\\-3\\-2\\-9\end{pmatrix}\]

求该向量组的一个极大无关组,并把其它向量用极大无关组表示。

解:我们先把向量组排成一个矩阵

\[A=( \vec{a}_1 \quad \vec{a}_2 \quad \vec{a}_3 \quad \vec{a}_4 \quad \vec{a}_5 )=\begin{pmatrix} 1&-2&9&5&4\\ 1&-1&6&5&-3\\ -2&0&-6&1&-2\\ 4&1&9&1&9 \end{pmatrix}\]

对此矩阵作初等变换,将矩阵化成行最简矩阵 (省去中间步骤) ,我们有

\[\begin{align*}A=\begin{pmatrix} 1&-2&9&5&4\\ 1&-1&6&5&-3\\ -2&0&-6&1&-2\\ 4&1&9&1&9 \end{pmatrix} \sim \begin{pmatrix} 1&0&3&0&0\\ 0&1&-3&0&-7\\ 0&0&0&1&-2\\ 0&0&0&0&0 \end{pmatrix} \end{align*}\]

我们看到,非零行是一、二、三行,第一行第一个非零元在第一列,它对应 \(\vec{a}_1\),第二行的第一个非零元在第二列,它对应 (\vec{a}_2\),第三行的第一个非零元在第四列,它对应 (\vec{a}_4\),所以原向量组的一个极大无关组为

\[ \vec{a}_1=\begin{pmatrix}1\\1\\-2\\4\end{pmatrix},\quad \vec{a}_2=\begin{pmatrix}-2\\-1\\0\\1\end{pmatrix},\quad \vec{a}_4=\begin{pmatrix}5\\5\\1\\1\end{pmatrix} \]

现在我们将 \( \vec{a}_3 , \vec{a}_5\) 用极大无关组表示。因为在行最简矩阵里,第三列与第一、二、四列的关系为

\[\begin{pmatrix}3\\-3\\0\\0\end{pmatrix}=3\begin{pmatrix}1\\0\\0\\0\end{pmatrix}-3 \begin{pmatrix}0\\1\\0\\0\end{pmatrix} \]

所以

\[\vec{a}_3=3\vec{a}_1-3\vec{a}_2,\quad \text{即} \begin{pmatrix}9\\6\\-6\\9\end{pmatrix} =3 \begin{pmatrix}1\\1\\-2\\4\end{pmatrix} -3 \begin{pmatrix}-2\\-1\\0\\1\end{pmatrix} \]

再从行最简矩阵第五列与第一、二、四列的关系

\[\begin{pmatrix}14\\-7\\-2\\0\end{pmatrix}=-7 \begin{pmatrix}0\\1\\0\\0\end{pmatrix} -2 \begin{pmatrix}0\\0\\1\\0\end{pmatrix} \]

知道

\[\vec{a}_5=-7\vec{a}_2-2\vec{a}_4,\quad \text{即} \begin{pmatrix}4\\-3\\-2\\-9\end{pmatrix} =-7 \begin{pmatrix}-2\\-1\\0\\1\end{pmatrix}-2 \begin{pmatrix}5\\5\\1\\1\end{pmatrix} \]

可以验算一下,这两个表示式是正确的。

如何求矩阵的逆矩阵( how to find inverse matrix)?

求逆矩阵最有效的方法是初等变换法(虽然还有别的方法)。如果要求方阵 \(A\) 的逆矩阵,标准的做法是:

  • 将矩阵 \(A\) 与单位矩阵 \(I\) 排成一个新的矩阵 \((A \quad I)\)
  • 将此新矩阵 \(( A \quad I )\) 做初等行变换,将它化成 \(( I \quad B )\) 的形式
  • \(B=A^{-1}\)

若 \(A\) 是一个二阶方阵

\[A=\begin{pmatrix}a&b\\ c&d\end{pmatrix}\]

则它的逆矩阵可以直接使用公式

\[A^{-1}=\frac{1}{ad-bc}\begin{pmatrix}d&-b\\ -c&a\end{pmatrix}\]

来计算。我们来看几个例子。

例1:求二阶矩阵

\[A=\begin{pmatrix}8&6\\ 5&4\end{pmatrix}\]

的逆矩阵。

解:因为矩阵是二阶矩阵,我们可以直接利用二阶逆矩阵的公式来求解。

\[\begin{align*}A^{-1}&=\frac{1}{8\cdot4-6\cdot5}\begin{pmatrix}4&-6\\ -5&8\end{pmatrix} \\& =\frac{1}{2}\begin{pmatrix} 4&-6\\ -5&8 \end{pmatrix}= \begin{pmatrix} 2&-3\\ -\frac{5}{2}&4 \end{pmatrix}\end{align*}\]

例2:求矩阵

\[A= \begin{pmatrix} 1&0&-2\\ -3&1&4\\ 2&-3&4\end{pmatrix} \]

的逆矩阵。

解:这是一个三阶的矩阵,最简便有效的方法是初等变换法。(你可以试试用伴随矩阵的方法来求,计算量比初等变换法相差多大)我们将矩阵与单位矩阵排在一起,然后做初等变换

\[\begin{align*}(A\quad I)&=\begin{pmatrix} 1&0&-2&\vdots&1&0&0\\ -3&1&4 &\vdots& 0&1&0\\ 2&-3&4 &\vdots& 0&0&1\end{pmatrix}\sim \begin{pmatrix} 1&0&-2&\vdots&1&0&0\\ 0&1&-2 &\vdots& 3&1&0\\ 0&-3&8 &\vdots& -2&0&1\end{pmatrix}\\ &\sim \begin{pmatrix} 1&0&-2&\vdots&1&0&0\\ 0&1&-2 &\vdots& 3&1&0\\ 0&0&2 &\vdots& 7&3&1\end{pmatrix}\sim \begin{pmatrix} 1&0&0&\vdots&8&3&1\\ 0&1&0 &\vdots& 10&4&1\\ 0&0&2 &\vdots& 7&3&1\end{pmatrix}\\&\sim \begin{pmatrix} 1&0&0&\vdots&8&3&1\\ 0&1&0 &\vdots& 10&4&1\\ 0&0&1 &\vdots& \frac{7}{2}&\frac{3}{2}&\frac{1}{2}\end{pmatrix} \end{align*}\]

所以我们得到

\[A^{-1}= \begin{pmatrix} 8&3&1\\ 10&4&1\\\frac{7}{2}&\frac{3}{2}&\frac{1}{2}\end{pmatrix} \]

我们看到的这个矩阵是三阶的,利用初等变换计算逆矩阵已经比伴随矩阵法少了很多的计算量了。实际上,矩阵的阶数越高,节约下来的计算量越多。利用伴随矩阵计算逆矩阵,三阶矩阵的话,需要计算一个三阶行列式,九个二阶行列式。四阶的话,需要计算一个四阶行列式,十六个三阶行列式,手算的话,已经让人难以接受了。

我们来看一个四阶矩阵的逆矩阵。

例3:求矩阵

\[A=\begin{pmatrix}1&2&3&4\\ 2&3&1&2\\ 1&1&1&-1\\ 1&0&-2&-6\end{pmatrix}\]

的逆矩阵。

解:我们将下述矩阵做初等变换

\[ \begin{align*} (A\quad I)&= \begin{pmatrix}1&2&3&4 &\vdots &1&0&0&0\\ 2&3&1&2 &\vdots &0&1&0&0\\ 1&1&1&-1 &\vdots &0&0&1&0\\ 1&0&-2&-6 &\vdots &0&0&0&1\end{pmatrix}\sim \begin{pmatrix} 1&0&-2&-6 &\vdots &0&0&0&1\\ 2&3&1&2 &\vdots &0&1&0&0\\ 1&1&1&-1 &\vdots &0&0&1&0\\ 1&2&3&4 &\vdots &1&0&0&0 \end{pmatrix} \\& \sim \begin{pmatrix} 1&0&-2&-6 &\vdots &0&0&0&1\\ 0&3&5&14 &\vdots &0&1&0&-2\\ 0&1&3&5 &\vdots &0&0&1&-1\\ 0&2&5&10 &\vdots &1&0&0&-1 \end{pmatrix}\sim \begin{pmatrix} 1&0&-2&-6 &\vdots &0&0&0&1\\ 0&1&3&5 &\vdots &0&0&1&-1 \\ 0&3&5&14 &\vdots &0&1&0&-2 \\ 0&2&5&10 &\vdots &1&0&0&-1 \end{pmatrix}\\&\sim \begin{pmatrix} 1&0&-2&-6 &\vdots &0&0&0&1\\ 0&1&3&5 &\vdots &0&0&1&-1 \\ 0&0&-4&-1 &\vdots &0&1&-3&1 \\ 0&0&-1&0 &\vdots &1&0&-2&1 \end{pmatrix}\sim \begin{pmatrix} 1&0&-2&-6 &\vdots &0&0&0&1\\ 0&1&3&5 &\vdots &0&0&1&-1 \\ 0&0&-1&0 &\vdots &1&0&-2&1 \\ 0&0&-4&-1 &\vdots &0&1&-3&1 \end{pmatrix}\\&\sim \begin{pmatrix} 1&0&-2&-6 &\vdots &0&0&0&1\\ 0&1&3&5 &\vdots &0&0&1&-1 \\ 0&0&-1&0 &\vdots &1&0&-2&1 \\ 0&0&0&-1 &\vdots &-4&1&5&-3 \end{pmatrix}\sim \begin{pmatrix} 1&0&-2&0 &\vdots &24&-6&-30&19\\ 0&1&3&0 &\vdots &-20&5&26&-16 \\ 0&0&-1&0 &\vdots &1&0&-2&1 \\ 0&0&0&-1 &\vdots &-4&1&5&-3 \end{pmatrix} \\ &\sim \begin{pmatrix} 1&0&0&0 &\vdots &22&-6&-26&17\\ 0&1&0&0 &\vdots &-17&5&20&-13 \\ 0&0&-1&0 &\vdots &1&0&-2&1 \\ 0&0&0&-1 &\vdots &-4&1&5&-3 \end{pmatrix}\sim \begin{pmatrix} 1&0&0&0 &\vdots &22&-6&-26&17\\ 0&1&0&0 &\vdots &-17&5&20&-13 \\ 0&0&1&0 &\vdots &-1&0&2&-1 \\ 0&0&0&1 &\vdots &4&-1&-5&3 \end{pmatrix} \end{align*}\]

所以,我们得到

\[A^{-1}= \begin{pmatrix} 22&-6&-26&17\\ -17&5&20&-13 \\ -1&0&2&-1 \\ 4&-1&-5&3 \end{pmatrix} \]

降阶法求二阶常系数线性微分方程的解

对于二阶常系数线性微分方程,不管是齐次的方程还是非齐次的方程,都可以用降阶法来求解。这种方法,优点有两个,第一个优点是,不管方程是齐次的还是非齐次的,都可以用统一的方法来求解;第二个优点是,对于非齐次方程来说,不管非齐次项具有什么形式,与特征根有什么关系,处理方法是一样的。缺点就是积分的计算量比较大。

我们用例子来说明,怎么样用降阶法来求二阶常系数线性微分方程。

例1:求解微分方程

\[y^{\prime\prime}-5y’+6y=xe^x\]

解:方程可以写成

\[\begin{align*}& y ^{\prime\prime} -2y’-3y’+6y=xe^x \\ \Longrightarrow& (y ^{\prime\prime} -2y’)-3(y’-2y)=xe^x \\ \Longrightarrow & (y’-2y)’-3(y’-2y)=xe^x\\ \end{align*}\]

这时候,如果令 \(z= y’-2y \),则方程变为

\[z’-3z=xe^x\]

这是一个一阶线性微分方程,我们知道它的解为

\[\begin{align*}z&=e^{3x}\left(\int e^{-3x}xe^xdx+ C_1\right)\\ &= C_1e^{3x}-\frac{1}{2}xe^{-x}-\frac{1}{4}e^{-x}\end{align*}\]

代回到原来变量,我们有

\[y’-2y= C_1e^{3x}-\frac{1}{2}xe^{-x}-\frac{1}{4}e^{-x} \]

这依然是一个一阶线性微分方程,它的解为

\[\begin{align*}y&=e^{2x}\left(\int e^{-2x}( C_1e^{3x}-\frac{1}{2}xe^{-x}-\frac{1}{4}e^{-x} )dx+C_2\right)\\ &=C_1e^{3x}+C_2e^{2x}+\frac{1}{6}xe^{-3x}+\frac{1}{18}e^{-3x}+\frac{1}{12}e^{-3x}\\ &= C_1e^{3x}+C_2e^{2x}+\frac{1}{6}xe^{-3x}+ \frac{5}{36}e^{-3x}\end{align*}\]

这里我们演示了如何利用降阶法来求二阶常系数线性微分方程的解。事实上,如果齐次微分方程对应的特征方程 \(r^2+pr+q=0\) 有两个特征根 \(\lambda_1,\lambda_2\) (不管是不是重根,是不是实根),则微分方程

\[y^{\prime\prime}+py’+qy=f(x)\]

可以写成

\[\qquad y^{\prime\prime}-(\lambda_1+\lambda_2)y’+\lambda_1\lambda_2y=f(x) \]

\[\Longrightarrow(y’-\lambda_2y)’-\lambda_1( y’-\lambda_2y )=f(x)\]

这时候,我们只需要令 \(z= y’-\lambda_2y \),就可以将二阶方程化成一阶方程了。这就是降阶法的基本思想。

我们再来看一看重根和复根的情形。

例2:求方程的通解:

\[y^{\prime\prime}-4y’+4y=e^{2x}\sin x\]

解:方程的特征方程为 \(r^2-4r+4=0\),它有重特征根 \(\lambda_{1,2}=2\),所以方程可以写成\[(y’-2y)’-2(y’-2y)= e^{2x}\sin x \]

作代换 \(z= y’-2y \),则方程变为 \(z’-2z= e^{2x}\sin x \),它有解

\[\begin{align*}z&=e^{2x}\left(\int e^{-2x} e^{2x}\sin x dx+C_1\right)\\ &=C_1e^{2x}-e^{2x}\cos x\end{align*}\]

代回原来变量,我们得到

\[y’-2y= C_1e^{2x}-e^{2x}\cos x \]

它的解为

\[\begin{align*}y&=e^{2x}\left(\int e^{-2x}( C_1e^{2x}-e^{2x}\cos x )dx+C_2\right)\\ &=C_1xe^{2x}+C_2e^{2x}-e^{2x}\sin x\end{align*}\]

例3:求方程的通解:

\[y^{\prime\prime}+4y=e^x\]

解:这个方程的特征方程为 \(\lambda_{1,2}=\pm 2i\),所以方程可以分解成

\[(y’-2iy)’+2i(y’-2iy)=e^x\]

作代换 \(z= y’-2iy \),则方程变为 \(z’+2iz=e^x\),它的解为

\[\begin{align*}z&=e^{-2ix}\left(\int e^{2ix}e^xdx+C_1 \right) \\ &=C_1 e^{-2ix} +\frac{1 }{1+2i} e^x \end{align*}\]

回到原来变量,我们有

\[y-2iy= C_1 e^{-2ix} +\frac{1 }{1+2i} e^x \]

它的解为

\[\begin{align*}y&= e^{2ix}\left(\int e^{-2ix}\left( C_1 e^{-2ix} +\frac{1 }{1+2i} e^x dx\right)+C_2 \right)\\ &=C_1e^{-2ix}+C_2e^{2ix}+\frac{1}{5}e^x \end{align*}\]

这里的\(C_1\) 与第一个等式的 \(C_1\) 相差一个复数常数。应用欧拉公式(Euler 公式)\(e^{ix}=\cos x+i\sin x\),上式变成

\[\begin{align*}y&=C_1(\cos 2x-i\sin 2x)+C_2(\cos 2x+i\sin 2x)+ \frac{1}{5}e^x \\ &=(C_1+C_2)\cos 2x+i(C_2-C_1)\sin2x+ \frac{1}{5}e^x \\&=\tilde{C_1}\cos 2x+\tilde{C_2}\sin 2x+ \frac{1}{5}e^x \end{align*}\]

我们仍然用 \(C_1,C_2\)表示 \(\tilde{C_1},\tilde{C_2}\),那么方程的通解为

\[y=C_1\cos2x+C_2\sin2x+ \frac{1}{5}e^x \]

从以上的计算我们可以看出,不管特征根是单根、重根还是复根,处理的方式是一样的。而且我们也看出,我们也不需要考虑非齐次项的形式。这与我们通常采用的待定系数法有根本的区别。

这种降阶法可以应用到高阶常系数线性微分方程。事实上,这种降阶法也称之为算子法或者算子分解法。算子法更一般的处理方式,我们就不展开论述了。

如何用半角代换(万能代换)求积分?

半角代换,指的是用代换 u=\tan \frac{x}{2} 将三角函数化简的一种积分方法。 因为这个代换能将任意的三角有理函数化成有理函数,因而也称之为万能代换。我们知道,任何的有理函数都是可以求得出它的不定积分,因而所有的三角有理函数也是可以求它的不定积分。

因为所有的三角函数都可以表示成 \sin x, \cos x 的表达式,所以我们只需要知道这两个函数在半角代换下的表达式即可。我们利用三角形来导出这些表达式。因为 u=\tan\frac{x}{2},由 \tan x 的定义,我们知道三角形的关系如图

Rendered by QuickLaTeX.com

从图形上可以看出

    \[\cos\frac{x}{2}=\frac{1}{\sqrt{1+u^2}},\quad \sin\frac{x}{2}=\frac{u}{\sqrt{1+u^2}}\]

从三角恒等式

    \[\sin2x=2\sin x\cos x,\quad \cos 2x=\cos^2x-\sin^2x \]

可以得到

    \[\sin x=\sin(2\cdot\frac{x}{2})=2\sin\frac{x}{2}\cos\frac{x}{2}= \frac{u}{\sqrt{1+u^2}} \cdot  \frac{1}{\sqrt{1+u^2}}  =\frac{u}{1+u^2} \]

    \[\cos x=\cos (2\cdot\frac{x}{2})=\cos^2\frac{x}{2}-\sin^2\frac{x}{2}=\frac{1}{1+u^2}-\frac{u^2}{1+u^2}=\frac{1-u^2}{1+u^2}\]

最后,我们需要导出 dx 的表达式。 因为 x=2\arctan u, 所以

    \[dx=\frac{2}{1+u^2}du\]

总结起来,我们有

    \[\sin x=\frac{u}{1+u^2},\quad \cos x=\frac{1-u^2}{1+u^2},\quad dx=\frac{2}{1+u^2}du\]

有了这些公式之后,我们就可以用半角代换来求三角有理函数的积分了。我们来看两个例子。

例1:求积分

    \[\int\frac{dx}{3\sin x-4\cos x}\]

解:应用半角代换 u=\tan\frac{x}{2},我们有\sin x=\frac{u}{1+u^2},\quad \cos x=\frac{1-u^2}{1+u^2},\quad dx=\frac{2}{1+u^2}du,代入到积分里,得到

    \begin{align*} \int\frac{dx}{3\sin x-4\cos x} &= \int\frac{1}{3 \frac{u}{1+u^2} -4 \frac{1-u^2}{1+u^2} }\cdot \frac{2}{1+u^2}du \\ &=2\int\frac{1}{6u-4+4u^2}du=\int\frac{1}{ 2u^2+3y-2 }du\\ &=\int\frac{1}{(2u-1)(u+2)}du\end{align*}

利用有理函数的分式分解(参考有理函数的积分),我们有

    \[ \frac{1}{(2u-1)(u+2)} =\frac{2}{5}\cdot\frac{1}{2u-1}-\frac{1}{5}\cdot\frac{1}{ u+2 }\]

所以原积分变为

    \begin{align*} \int\frac{dx}{3\sin x-4\cos x} &= \frac{2}{5}\int\frac{1}{2u-1}du-\frac{1}{5}\int\frac{1}{ u+2 }du \\ &=  \frac{1}{5} \ln|2u-1|-\frac{1}{5}\ln|u+1|+C \\&= \frac{1}{5}\ln\left|\frac{2u-1}{u+1}\right|+C \\ &=\frac{1}{5} \ln\left|\frac{2\tan\frac{x}{2}-1}{\tan\frac{x}{2}+1}\right|+C \end{align*}

例2:求积分

    \[\int\frac{dx}{\sin x+\tan x}\]

解:作变换 u=\tan\frac{x}{2},我们有 \sin x=\frac{u}{1+u^2},\quad \cos x=\frac{1-u^2}{1+u^2},\quad dx=\frac{2}{1+u^2}du,那么\tan x=\frac{\sin x}{\cos x}=\frac{u}{1-u^2},所以原积分为

    \begin{align*} \int\frac{dx}{\sin x+\tan x}  &= \int\frac{1}{\frac{u}{1+u^2}+\frac{u}{1-u^2}}\cdot\frac{2}{1+u^2}du\\ &=\int\frac{1-u^2}{2u}du=\frac{1}{2}\ln|u|-\frac{1}{4}u^2+C\\ &=\frac{1}{2}\ln\left|\tan\frac{x}{2}\right|-\frac{1}{4}\tan^2\frac{x}{2}+C\end{align*}

如何求 \(\tan^nx, \sec^nx\) 的积分?

形如 \[\int\tan^xdx, \int\cot^nxdx, \int\sec^nxdx, \int\csc^nxdx\]

的积分,基本上可以通过换元法或者分部积分法得出一个递推式,然后用递推法求得出它们的积分。这种类型的积分,递推式比较容易求得。我们来看看怎么做

\[\begin{align*}I_n&=\int\tan^nxdx\\ &=\int\tan^{n-2}x\tan^2xdx\\ &=\int \tan^{n-2}x(\sec^2x-1)dx\\ &=\int \tan^{n-2}x\sec^2x-\int\tan^{n-2}xdx\\ &=\frac{1}{n-1}\tan^{n-1}x-I_{n-2} \end{align*} \]

再由

\[\int\tan xdx=\int\frac{\sin x}{\cos x}dx=-\ln|\cos x|+C\]

和 \[\int\tan^2xdx=\int(\sec^2x-1)dx=\tan x-x+C\]

即可求出积分。例如

\[\begin{align*}\int\tan^5xdx&=\frac{1}{4}\tan^4x-\int\tan^3xdx\\ &= \frac{1}{4}\tan^4x -(\frac{1}{2}\tan^2x -\int\tan xdx)\\ &= \frac{1}{4}\tan^4x -\frac{1}{2}\tan^2x- \ln|\cos x|+C \end{align*}\]

\[\begin{align*} \int\tan^6xdx&=\frac{1}{5}\tan^5x-\int\tan^4xdx\\ &= \frac{1}{5}\tan^5x -(\frac{1}{3}\tan^3x -\int\tan^2 xdx)\\ &= \frac{1}{5}\tan^5x -\frac{1}{3}\tan^3x+ \tan x-x+C \end{align*}\]

对于 \(\cot^nx\) 的积分,同样的处理即可。

我们现在来看 \(\sec^nx, \csc^nx\) 的积分。这里需要用到分部积分法

\[\begin{align*}I_n=\int\sec^nxdx&=\int\sec^{n-2}x\sec^2xdx\\ &=\sec^{n-2}\tan x-\int\tan x(n-2)\sec^{n-3}x\tan x\sec xdx\\ &= \sec^{n-2}\tan x – (n-2)\int\sec^{n-2}x\tan^2 x\\ &= \sec^{n-2}\tan x – (n-2)\int\sec^{n-2}x (\sec^2x-1)dx\\ &= \sec^{n-2}\tan x – (n-2)\int\sec^{n}xdx +(n-2)\int\sec^{n-2}xdx \end{align*}\]

将右边\( (n-2)\int\sec^{n}xdx \)移项到左边,我们得到

\[(n-1)I_n= \sec^{n-2}\tan x +(n-2)I_{n-2}\]

也就是 \[I_n=\frac{1}{n-1} \sec^{n-2}\tan x +\frac{n-2}{n-1}I_{n-2}\]

再由

\[\int\sec xdx=\ln|\tan x+\sec x| +C\]

和 \[\int\sec^2xdx=\tan x+C\] 就可以求出积分。例如

\[\begin{align*}\int\sec^5xdx&=\frac{1}{4}\sec^3x\tan x+\frac{3}{4}\int\sec^3xdx\\ &= \frac{1}{4}\sec^3x\tan x + \frac{3}{4} \left(\frac{1}{2}\sec x \tan x+\int\sec x dx\right)\\ &= \frac{1}{4}\sec^3x\tan x + \frac{3}{8} \sec x \tan x + \frac{3}{4} \ln|\tan x+\sec x| +C \end{align*}\]

另外一个

\[\begin{align*}\int\sec^6xdx&=\frac{1}{5}\sec^4x\tan x+\frac{4}{5}\int\sec^4xdx\\ &= \frac{1}{5}\sec^4x\tan x + \frac{4}{5} \left(\frac{2}{3}\sec^2 x \tan x+\int\sec^2 x dx\right)\\ &= \frac{1}{5}\sec^4x\tan x + \frac{8}{15} \sec^2 x \tan x +\frac{4}{5} \tan x+C \end{align*}\]

如何求 \(\sin^n x, \cos^n x\) 的积分?

\(\sin^n x\) 和 \(\cos^n x\) 的积分方法主要有两种:第一种是根据 \(n\) 的奇、偶情况分别采用换元法或者降阶法来求;另一种是递推法。

我们来看换元法和降阶法。设 \(n\) 是奇数,则我们采用换元法。例如

\[\begin{align*}\int\sin^5xdx&=\int\sin^4x\sin xdx\\ &=\int(1-\cos^2x)^2(-\cos x)’dx\\ &=-\int(1-2\cos^2x+\cos^4x)d(\cos x)\\ &=-\int(1-2u^2+u^4)du\\ &=-(u-\frac{2}{3}u^3+\frac{1}{u^5})+C\\ &= \frac{2}{3} \cos^3x-\cos x-\frac{1}{5}\cos^5x+C\end{align*}\]

对于 \(\cos^nx\) 同样处理。

如果 \(n\) 是偶数,则使用降阶法。我们知道 \(\cos^2x=\frac{1+\cos(2x)}{2}, \sin^2x=\frac{1-\cos(2x)}{2}\)。所以

\[\int\sin^nxdx=\int\left( \frac{1-\cos(2x)}{2} \right)^{n/2}dx\]

\[ \int\cos^nxdx=\int\left( \frac{1+\cos(2x)}{2} \right)^{n/2}dx \]

从而使被积函数的阶降了一半。

例如

\[\begin{align*}\int\cos^4xdx&=\int \left( \frac{1+\cos(2x)}{2} \right)^2dx \\ &=\frac{1}{4}\int\left(1+2\cos(2x)+\cos^2(2x)\right)dx\\ &= \frac{1}{4}\int\left(1+2\cos(2x)+\frac{1+\cos(4x)}{2}\right)dx\\ &= \frac{1}{4}\left(x+\sin(2x)+\frac{x}{2}+\frac{1}{8}\sin(4x)\right)+C \end{align*}\]

第二种方法就是递推法。这种方法的好处是可以不管 \(n\) 的奇偶性,对任何的自然数 \(n\) 都可以用。利用分部积分法

\[\begin{align*}\int\sin^nxdx&=\int\sin^{n-1}x\sin xdx\\ &=-\sin^{n-1}x\cos x+\int(n-1)\sin^{n-2}x\cos x\cos xdx\\ & = -\sin^{n-1}x\cos x+ (n-1)\int\sin^{n-2}x\cos^2xdx\\ &= -\sin^{n-1}x\cos x+ (n-1)\int \sin^{n-2}x(1-\sin^2x)dx\\ &= -\sin^{n-1}x\cos x+ (n-1)\int (\sin^{n-2}x-\sin^nx)dx \end{align*}\]

将右边的 \(\int\sin^nxdx\) 移到左边,我们得到

\[n\int\sin^nxdx= -\sin^{n-1}x\cos x+ (n-1)\int \sin^{n-2}xdx \]

如果记 \(I_n=\int\sin^nxdx\),则上式为

\[I_n= -\frac{1}{n}\sin^{n-1}x\cos x+\frac{n-1}{n}I_{n-2} \]

那么只要给出 \(n\) 的值,我们就可以利用这个公式以及

\[\int\sin^0xdx=x+C, \quad \int\sin xdx=-\cos x+C\]



求出积分的值。

我们来看这个公式的应用。

\[\begin{align*}\int\sin^5xdx&= -\frac{1}{5}\sin^{4}x\cos x+\frac{4}{5}\int\sin^3xdx\\ &= -\frac{1}{5}\sin^{4}x\cos x +\frac{4}{5} \left(-\frac{1}{3}\sin^2x\cos x+\frac{2}{3}\int\sin xdx\right)\\ &= -\frac{1}{5}\sin^{4}x\cos x -\frac{4}{15} \sin^2x\cos x -\frac{8}{15}\cos x+C \end{align*}\]

\(\int\cos^nxdx\) 可以完全同样的方式处理。我们有

\[\begin{align*}\int\cos^n xdx&=\int\cos^{n-1}x\cos xdx\\ &=\cos^{n-1}x\sin x+\int(n-1)\cos^{n-2}x\sin^2xdx\\ &= \cos^{n-1}x\sin x+ (n-1) \int\cos^{n-2}x(1-\cos^2x)dx \\ &= \cos^{n-1}x\sin x+ (n-1) \int\cos^{n-2}xdx- (n-1) \int\cos^nxdx\end{align*}\]

所以

\[\int\cos^nxdx=\frac{1}{n} \cos^{n-1}x\sin x + \frac{n-1}{n} \int\cos^{n-2}xdx\]

例如

\[\begin{align*}\int\cos^4xdx&=\frac{1}{4}\cos^3x\sin x+ \frac{2}{3} \int\cos^2xdx\\ &= \frac{1}{4}\cos^3x\sin x+ \frac{2}{3} \left(\frac{1}{2}\cos x\sin x+\frac{1}{2}\int\cos^0xdx\right)\\ &= \frac{1}{4}\cos^3x\sin x+ \frac{1}{3} \cos x\sin x +\frac{1}{3}x+C \end{align*}\]

有理函数的积分,并非只有部分分式法

这篇文章我们考虑两个积分

\[\int\frac{1}{x^7-x}dx,\qquad \int\frac{x^2-1}{x^4+1}\]

这是两个有理函数的积分。我在之前的文章里说过 ,有理函数的积分,一般采用部分分式法,就是将有理函数分解成四种简单分式之和,然后对简单分式分别积分就行。对于有理函数的积分,总是能采用这种方法求得出它们的积分 (参见 不定积分求法总结)。 读者可以先试试用部分分式法求这两个积分,看看能不能积出来,需要花费多长时间。

我们的问题是,部分分式积分法对有理函数并不总是最有效的,对于有些有理函数,采用其它的方法或许会更有效。我们来看第一个积分

\[\int\frac{1}{x^7-x}dx\]

对于这一个积分 ,如果采用部分分式法来积分 ,我们来看一下需要哪些步骤:

\[ \frac{1}{x^7-x} =\frac{1}{x(x^3-1)(x^3+1)}=\frac{1}{x(x-1)(x^2+x+1)(x+1)(x^2-x+1)}\]

那么它的部分分式就该有五部分

\[\frac{A_1}{x}, \frac{A_2}{x-1},\frac{A_3}{x+1},\frac{B_1x+C_1}{x^2+x+1},\frac{B_2x+C_2}{x^2-x+1}\]

光是求这些系数就够烦琐的了,而且最后两个二次分式的积分还需要分成两个积分来求 。虽然这也能求出最后的积分,但这中间的过程绝不是一件有趣的事。

其实,这样的积分 ,我们有一种更有效,更简单的方式来求。我们来看解答。

解:积分可以写成

\[\int\frac{1}{x^7-x}dx=\int\frac{1}{x^7(1-\frac{1}{x^6})}dx\]

如果我们令 \(u= 1-\frac{1}{x^6} \),则 \(du=\frac{6}{x^7}\),则上式变为

\[\begin{align*} \int\frac{1}{x^7(1-\frac{1}{x^6})}dx &=\frac{1}{6}\int\frac{6}{x^7}\frac{1}{1-\frac{1}{x^6}}dx\\ &= \int\ \frac{1}{6}\frac{1}{u}du\\ &=\frac{1}{6}\ln|u|+c \\ &=\frac{1}{6}\ln|1-\frac{1}{x^6}|+c\end{align*}\]

我们来看第二个例子。

\[\int\frac{x^2-1}{x^4-1}dx\]

解:这个积分初看起来,甚至都不知道怎么对分式进行分解(当然是可以进行分解的,只是不那么明显而已,你可以试一试)。但即使是我们找到了它的分解方式,使用部分分式法来求这个积分,也不是最有效的。 我们来看一下如何简便地求出这个积分。我们先对分子分母同除以 \(x^2\),得到了

\[\int\frac{1-\frac{1}{x^2}}{x^2+\frac{1}{x^2}}dx\]

再对分母配方,我们得到

\[\int\frac{ 1-\frac{1}{x^2} }{(x+\frac{1}{x})^2-2}dx\]

这个时候注意到 \(\left( x+\frac{1}{x} \right)’= 1-\frac{1}{x^2} \),所以我们可以用代换 \(u= x+\frac{1}{x} \),从而积分可以变成

\[\int\frac{du}{u^2-2}\]

这时候我们再用部分分式 \[ \frac{1}{u^2-2}=\frac{1}{(u-\sqrt{2})(u+\sqrt{2})}=\frac{A}{u-\sqrt2}+\frac{B}{u+\sqrt2} \]

求出 \(A,B\),我们得到 \(A=\frac{1}{2\sqrt2}, B=-\frac{1}{2\sqrt2}\)。所以积分 变为

\[ \begin{align*}\int\frac{du}{u^2-2} &= \frac{1}{2\sqrt2} \int\frac{du}{u-\sqrt2}- \frac{1}{2\sqrt2} \int\frac{du}{u+\sqrt2}\\ &= \frac{1}{2\sqrt2}( \ln|u-\sqrt2|+\ln|u+\sqrt2|)+C\\ &= \frac{1}{2\sqrt2} \ln\left|\frac{u-\sqrt2}{u+\sqrt2} \right|+C \end{align*}\]

代回原来变量,我们得到了

\[\int\frac{x^2-1}{x^4+1}dx= \frac{1}{2\sqrt2} \ln\left|\frac{x+\frac{1}{x}-\sqrt2}{x+\frac{1}{x}+\sqrt2} \right|+C \]

最后,我们看看,如果要用部分分式法求解,如何对被积函数进行分解。我们对分母进行配方

\[\begin{align*}\frac{x^2-1}{x^4+1}&=\frac{x^2-1}{(x^4+2x^2+1)-2x^2}\\ &=\frac{x^2-1}{(x^2+1)^2-2x^2}\\ &= \frac{x^2-1}{(x^2+1-\sqrt{2}x)(x^2+1-\sqrt{2}x)}\\ &= \frac{A_1x+B_1}{x^2+1-\sqrt{2}x}+\frac{A_2x+B_2}{x^2+1-\sqrt{2}x} \end{align*}\]

剩下的部分留给读者去完成 。

已知函数的切线过曲线外一点,如何求该切线的方程?

假如函数\(y=f(x)\) 的一条切线过点 \((a,b)\),如何求这条切线的方程?

这样的题通常有点迷惑性,有些同学经常是求出函数的导数后,想都不想就把 \((a,b)\) 的值代入到切线的方程里去,自然就求出了一个错误的方程。另外,这样的题也稍微有一点难度,纵然知道怎么求,也需要花一点点时间来计算。

我们用一个例子说明如何求这样的切线。

例:已知曲线 \(y=\frac{1}{x}\) 的切线过点 \((4,0)\) ,求该切线的方程。

解:这种题的迷惑性在于,它并没有直接说点 \((4,0)\) 不在曲线上,这使得不少的同学直接把它当成直线上的点来计算切线的方程。当然这个例子,比较明显这个点不在直线上。那我们来看一看如何处理这种题型。

我们假设切线与曲线相切于点 \((x_0,y_0)\),则切线的方程为

\[y-y_0=f'(x_0)(x-x_0)\]

我们求出函数的一阶导数为 \(f'(x)=-\frac{1}{x^2}\)。所以曲线在该点的切线方程为

\[ y-y_0=-\frac{1}{x_0^2}(x-x_0) \]

因为 \((x_0,y_0)\) 在曲线上,所以有 \(y_0=\frac{1}{x_0}\),所以切线方程为

\[y= -\frac{x}{x_0^2}+\frac{2}{x_0} \]

又因为切线过点 \((4,0)\) ,所以切线方程又可以写成

\[ y= -\frac{1}{x_0^2}(x-4) \]

将这两个方程比较 ,我们得到

\[ \frac{2}{x_0} = \frac{4}{x_0^2} \]

两边同乘以 \(x_0^2\),我们得到 \(x_0=2\),代入到上面任何一个切线方程里,就可以得到切线的方程为

\[y=-\frac{1}{4}x+1\]

对于这种类型的题目,关键步骤是求出切点的坐标。求切点坐标的方法就是将用导数给出的切线方程与用已给点导出切线方程做比较。只要求出切点,切线的方程就出来了。

如何求随机变量函数的分布函数和概率密度?

如果我们知道一个随机变量 \(X\) 的分布函数 \(F_X(x)\),要求出它的一个函数 \(Y=h(X)\) 的分布函数,这通常是一个不太容易的问题。

事实上,对于这一类问题,最直接、最有效的方法还是利用分布函数的定义 \(F(y)=P(Y\le y)\),然后利用 \(Y\) 与 \(X\) 的关系,对右边括号里的不等式进行变形,将 \(Y\) 的分布函数用 \(X\) 的分布函数表示出来,然后利用复合函数求导法则,可以求出 \(Y\) 的概率密度。我们来看一个例子。

例:设随机变量 \(X\) 的概率密度为

\[f(x)=\begin{cases}\frac{2}{\pi(1+x^2)},\quad &x>0\\ 0,& x\le 0\end{cases}\] 求 \(Y=\ln X\) 的分布函数与概率密度。

解:我们先求出 \(X\) 的分布函数。

当 \(x\le 0\) 时, \(f(x)=0\),所以 \(F_X(x)=0\)。

当 \(x>0\) 时,

\[F_X(x)=\int_{-\infty}^xf(x)dx=\int_0^x \frac{2}{\pi(1+x^2)} dx= \frac{2}{\pi}\arctan x \] 所以

\[F_X(x)=\begin{cases}0,& x\le 0\\ \frac{2}{\pi}\arctan x , \quad & x>0\end{cases}\]

我们再来求 \(Y\) 的分布函数。由分布函数的定义

\[F_Y(y)=P(Y\le y)=P(\ln X\le y)=P(X\le e^y)=F_X(e^y)\]

最后一步我们利用了分布函数的定义。所以

\[ F_Y(y) =F_X(e^y) = \frac{2}{\pi}\arctan e^y ,\quad -\infty<y<\infty\]

这里 \(y\) 取所有实数值是因为 \(e^y>0\) 对所有 \(y\) 成立,所以我们需要取 \(F_X(x)\) 中 \(x\) 为正的部分。

下一步求密度函数,就只需要求导就行了。

\[f_Y(y)=F’_Y(y)= \frac{2e^y}{\pi(1+e^{2y})},\quad -\infty<y<\infty \]

从这个例子我们可以看出求随机变量函数分布的基本方法了。虽然在一些教材中,针对某些特殊形式的密度函数,导出一些求随机变量函数的分布的计算公式,但是最有效的,还是直接利用分布函数的定义来求,而且这种方法不容易​出错。​