复变函数(Complex Variables)学些什么?

复变函数,实际上就是复数函数的微积分理论。这门课程就是逐步建立起复数域上的微积分理论。它的内容主要是以下几个部分。

1,复数的运算。复数的平面表达式 \(z=x+iy\),极坐标表达式\(z=re^{i\theta}\),复数的模(norm)\(|z|\),共轭复数(conjugate),曲线的复数表达式等等;

2,复数函数的定义与性质。例如指数函数 \(e^z\),三角函数\(\sin z, \cos z, \tan z\), 对数函数 \(\log z\),幂函数 \(z^n\),根式函数 \(\sqrt[n]{z}\) 等函数的定义与性质,它们的定义域,值域,取值等等;

3,复数函数的导数的定义,可导的条件;Cauchy-Riemann 方程以及函数可导的条件;

4,复数函数的积分运算;Cauchy 积分公式的及其各种应用;

5,复数函数的级数定理,Taylor 级数与 Laurent 级数;

6,复数函数的映射,或者函数的图形性质。共形映射定理。

通常初等的复函数课程不太可能讲共形映射定理,但一般的函数的映射会讲。

这门课程很多内容可以直接看成是实函数的微积分在复数域上的推广,这一部分的内容不难,例如求导公式 \((\sin z)’=\cos z, (e^z)’=e^z\), 可微函数的Taylor 级数,可微函数的积分,都跟实函数差不多。

但是这门课程的核心内容却是与实函数不一样的地方。例如 Cauchy 积分公式,Laurent 级数和共形映射。在初等的复变函数中,Cauchy 积分公式及其应用和 Laurent 级数占了这门课程的大部分比重。可以说,掌握了这两部分的内容,你就差不多掌握了这门课程。

如何应用对数求导法(logarithm differential) ?

所谓的对数求导法,就是先对函数 \(y=f(x)\) 取对数 \(\ln y=ln f(x)\),然后应用函数求导法则,两边对 \(x\) 求导
\[\frac{1}{y}y’=\frac{f(x)}{f'(x)},\]
从而求出 \(y’\) 的方法。

这种方法主要应用于下列两种情况:

1,函数是幂指函数 \(y=h(x)^{g(x)}\) 的情形。例如
\[y=\sin x ^{\ln x}\]

两边取对数,我们得到
\[\ln y=\ln(\sin x ^{\ln x})。\]

根据对数的运算法则,上式等于
\[\ln y= \ln x \ln(\sin x).\]

两边对 \(x\) 求导,将 \(y\) 看成是 \(x\) 的函数,我们得到
\[\begin{align*}\frac{1}{y}y’&=\frac{1}{x}\ln(\sin x)+\ln x \frac{\cos x}{\sin x}\\
&=\frac{\ln(\sin x)}{x}+\ln x\tan x
\end{align*}.\]

所以
\[\begin{align*}
y’&=y\left(\frac{\ln(\sin x)}{x}+\ln x\tan x\right)\\
&=\sin x ^{\ln x}\left(\frac{\ln(\sin x)}{x}+\ln x\tan x\right)
\end{align*}\]

2,函数混合了多重乘、除法及根式,例如
\[y=\frac{\sqrt[3]{7x^2+1}\cdot \sqrt[5]{2x-3}}{\sqrt{x^2+5}\cdot \sqrt[4]{3x-2}}.\]
这样的函数,不管是用乘法规则(product rule)还是除法规则(quotient rule),都是非常头疼的事。但是用对数求导法则,就简单多了。因为对数函数有几个非常好用的运算法则,就是乘法变成加法,除法变成减法,指数可以提到对数符号前面来。

我们对上面的函数两边取对数,得到
\[\ln y =\ln \left(\frac{\sqrt[3]{7x^2+1}\cdot \sqrt[5]{2x-3}}{\sqrt{x^2+5}\cdot \sqrt[4]{3x-2}}\right)\]
因为根式可以写成指数的形式,例如 \(\sqrt[3]{7x^2+1}=(7x^2+1)^{\frac{1}{3}}\),所以根据对数的运算法则,上式变成
\[\ln y=\frac{1}{3}\ln(7x^2+1)+\frac{1}{5}\ln(2x-3)-\frac{1}{2}\ln(x^2+5)-\frac{1}{4}\ln(3x-2)\]

两边关于 \(x\) 求导,我们得到
\[\frac{y’}{y}=\frac{1}{3}\frac{14x}{7x^2+1}+\frac{1}{5}\frac{2}{2x-3}-\frac{1}{2}\frac{2x}{x^2+5}-\frac{1}{4}\frac{3}{3x-2}\]
两边同乘以 \(y\),然后将 \(y\) 的表达式代入,就得到了
\[y’=\frac{\sqrt[3]{7x^2+1}\cdot \sqrt[5]{2x-3}}{\sqrt{x^2+5}\cdot \sqrt[4]{3x-2}}\left(\frac{1}{3}\frac{14x}{7x^2+1}+\frac{1}{5}\frac{2}{2x-3}-\frac{1}{2}\frac{2x}{x^2+5}-\frac{1}{4}\frac{3}{3x-2
}\right)\]

如何快速地写出方程组的解?

在教材上,通常求解方程组的时候,是将系数矩阵(coefficient matrix)或者增广矩阵(argument matrix)作初等行变换(row reduction)化成行阶梯形(row echelon form),然后写出它所对应的方程来求解。其实,这样的方法并不简便,特别是写回对应的方程,基本上是没有必要这样做。更有效的方法是将矩阵化成最简单的情形(Reduced row echelon form),然后根据系数直接写出解。我们用两个例子来说明这种方法。

我们行看一个齐次方程:

例1:求解线性方程组 \(A\vec{x}=0\),其中
\[A=
\begin{pmatrix}
1& 1& 2& 3\\
2& 0& 0& 2\\
3 &2& 4& 7
\end{pmatrix}\]

解:利用初等行变换,将系数矩阵化成行最简矩阵(我们省略具体步骤):

\[A=\begin{pmatrix}
1& 1& 2& 3\\
2& 0& 0& 2\\
3 &2& 4& 7
\end{pmatrix}
\sim
\begin{pmatrix}
1& 0& 0& 1\\
0 &1& 2& 2\\
0& 0&0& 0\\
\end{pmatrix}
\]

现在我们用一种比较快速的方法写出解。

我们知道每一个非零行的第一个非零元(pivot number) 所对应的未知元就是依赖元或者自由元(dependent variables),其它的叫自由元(free variables)。这里,自由元就是 \(x_3\) 和 \(x_4\),而非自由元是\(x_1,x_2\)。如果要快速地写出方程的解,可以这样作:

第一步,每次取一个自由元为 \(1\), 另外的所有自由元为 \(0\), 在这个题里,就是这样

\[\begin{pmatrix}
x_1\\
x_2\\
x_3\\x_4
\end{pmatrix}=x_3
\begin{pmatrix}
\\
\\
1\\
0
\end{pmatrix}+x_4
\begin{pmatrix}
\\
\\
0\\
1
\end{pmatrix}
\]

第二步,写出剩下的数字。剩下的数字怎么求呢? 我们只需要将自由元上的系数变个符号,就是非自由元的值。第一行,非自由元是 \(x_1\),它对应的 \(x_3\) 的系数是 \(0\),所以它在 \(x_3\) 那一部分的值是 \(0\);它对应 \(x_4\) 的系数是 \(1\),所以它对应于\(x_4\) 的部分是 \(-1\), 就是将 \(1\) 改个符号。就是这样:

\[\begin{pmatrix}
x_1\\
x_2\\
x_3\\x_4
\end{pmatrix}=x_3
\begin{pmatrix}
0\\
\\
1\\
0
\end{pmatrix}+x_4
\begin{pmatrix}
-1\\
\\
0\\
1
\end{pmatrix}
\]

而第二行,非自由元是 \(x_2\),它对应的 \(x_3\) 的系数是 \(2\),所以它在 \(x_3\) 那一部分的值是 \(-2\);它对应 \(x_4\) 的系数是 \(2\),所以它对应于\(x_4\) 的部分是 \(-2\)。所以方程的解就是

\[\begin{pmatrix}
x_1\\
x_2\\
x_3\\x_4
\end{pmatrix}=x_3
\begin{pmatrix}
0\\
-2\\
1\\
0
\end{pmatrix}+x_4
\begin{pmatrix}
-1\\
-2\\
0\\
1
\end{pmatrix}
\]

那么对于非齐次方程,怎么快速地写出解呢?由线性方程组解的理论可以知道,非齐次方程的解由两部分组成,一部分是对应齐次方程的解,另一部分就是非齐次方程的一个特解。这个特解其实也很好求的,我们用例子来说明。

例2:求解线性方程组 \(A\vec{x}=\vec{b}\),其中
\[A=
\begin{pmatrix}
1& 1& 2& 3\\
2& 0& 0& 2\\
3 &2& 4& 7
\end{pmatrix}\quad
\vec{b}=
\begin{pmatrix}
1\\
4\\
4
\end{pmatrix}
\]

解:利用初等行变换,将系数矩阵化成行最简矩阵:

\[
A=
\begin{pmatrix}
1& 1& 2& 3 &\vdots& 1\\
2& 0& 0& 2&\vdots& 4\\
3 &2& 4& 7 &\vdots& 4
\end{pmatrix}
\sim
\begin{pmatrix}
1& 0& 0&1 &\vdots&2\\
0& 1& 2& 2&\vdots& -1\\
0 &0& 0& 0&\vdots& 0
\end{pmatrix}
\]
我们知道,非齐次方程的通解是对应齐次方程的通解加上非齐次方程的一个特解。齐次方程的解,我们只要不看上式里最后一列,就跟前面的例子一样。所以对应齐次方程的通解是
\[\vec{x}=x_3
\begin{pmatrix}
0\\
-2\\
1\\
0
\end{pmatrix}+x_4
\begin{pmatrix}
-1\\
-2\\
0\\
1
\end{pmatrix}
\]

那么,非齐次方程的特解怎么得到呢?很简单,我们只要令自由元的值都为\(0\), 而非自由元的值就是对应的最后一列的值。所以,非齐次方程的一个特解就是
\[\vec{\eta}=\begin{pmatrix}
2\\
-1\\
0\\
0
\end{pmatrix}\]

所以,非齐次方程的通解是
\[
\vec{\xi}=\vec{x}+\vec{\eta}=x_3
\begin{pmatrix}
0\\
-2\\
1\\
0
\end{pmatrix}+x_4
\begin{pmatrix}
-1\\
-2\\
0\\
1
\end{pmatrix}+
\begin{pmatrix}
2\\
-1\\
0\\
0
\end{pmatrix}
\]

怎么判断一致收敛与非一致收敛?

我们这里考虑的是函数序列的一致收敛问题。

区间 \([a,b]\) 上的函数序列 \(\{f_n\}\) 被称为是一致收敛到\([a,b]\) 上的函数 \(f(x)\),指的是对于任意的 \(\epsilon>0\),存在不依赖于 \(x\) 的 \(N\),使得当 \(n>N\) 时,不等式\(|f_n(x)-f(x)|<\epsilon\)对于所有 \(x\in [a,b]\)成立。

从定义可以看到,要证明序列是一致收敛的,我们就要找到 \(N\),使得不等式\(|f_n(x)-f(x)|<\epsilon\) 当 \(n>N\)时对于所有 \(x\in [a,b]\)成立。这个 \(N\) 可以依赖于 \(n\) 和 \(\epsilon\),但不能依赖于 \(x\)。我们看一个例子:

例1:考虑 \(f_n(x)=\frac{x}{1+nx}, x\ge 0\)。因为
\[0< \frac{x}{1+nx}< \frac{x}{nx}\le \frac{1}{n}\] 所以只要 \(n>\frac{1}{\epsilon}\),\(|f_n(x)-0|<\epsilon\)。我们只需要取 \(N=[\frac{1}{\epsilon}]+1\),对么当 \(n>N\)时,\(|f_n(x)-0|<\epsilon\)对于所有 \(x\) 成立。所以 \(f_n(x)\) 一致收敛到 \(0\)。

要证明序列不一致收敛,并不是一件容易的事。当然,从定义可以看到,要证明序列不一致收敛,只需要找到一个 \(\epsilon\),使得不等式\(|f_n(x)-f(x)|<\epsilon\) 对某些 \(x\) 不成立即可。我们还是用一个例子来说明这种做法。

例2:考虑函数序列 \(f_n(x)=\frac{nx}{1+n^2x^2}, 0\le x\le 1\)。可以看出,这个序列收敛于 \(f(x)=0\), 因为
\[\frac{nx}{1+n^2x^2}< \frac{nx}{n^2x^2}=\frac{1}{nx}\] 所以只要 \(n>\frac{1}{x\epsilon}\),\(\frac{nx}{1+n^2x^2}<\epsilon\)。所以函数逐点收敛到 \(0\)。

现在取 \(\epsilon=\frac{1}{2}\),那么在区间\([0,1]\)上,总有一点 \(x=\frac{1}{n}\),使得函数值 \(f_n(x)=\frac{1}{2}\)。在这点上 \(f_n(x)<\frac{1}{2}\)是不成立的。所以函数序列不一致收敛。

怎么寻找线性变换(linear transformation)所对应的矩阵?

\(\mathbb{R}^n\)上的线性变换有一个重要的定理,就是每一个线性变换 \(T\) ,都有一个矩阵 \(A\) 跟它对应,使得 \(T(\vec{x})=A\vec{x}\)。定理的结论是这样的:

定理: 假设 \(T\) 是 \(\mathbb{R}^n\) 上的一个线性变换,那么必定存在一个矩阵 \(A\) 使得
\[T(\vec{x})=A\vec{x},\]
并且
\[A=[T\vec{e}_1 \ T\vec{e}_2 \ \cdots T\vec{e}_n].\]

这个定理的前一部分说明了这样的矩阵是存在的,而后一部分说明了怎么样寻找这样的矩阵。

从定理的叙述可以看出,我们只要\(\mathbb{R}^n\) 上的标准基的像都找出来,那么我矩阵 \(A\) 就找出来了。也就是说,一般情况下,我们只要盯住标准基 \(\vec{e}_1,\vec{e}_2,\cdots,\vec{e}_n\),看它们怎么变就行了。当然,有些复杂一点的变换,我们需要用一点点其它的技巧。

我们来看两个例子。

例1 假设 \(\mathbb{R}^2\) 的一个线性变换 \(T\) 定义为将平面上的点以直线 \(y=x\) 作反射,求 \(T\) 所对就的矩阵 \(A\).

解:要求出这个矩阵,我们只需要知道两个向量 \(\vec{v}_1=\begin{pmatrix}1\\0\end{pmatrix}, \vec{v}_2=\begin{pmatrix}0\\1\end{pmatrix}\) 变成了什么就可以了。

显然,以直线 \(y=x\) 作反射,\(\vec{v}_1=\begin{pmatrix}1\\0\end{pmatrix}\) 就变成了\(\vec{v}_2=\begin{pmatrix}0\\1\end{pmatrix}\), 而\(\vec{v}_2=\begin{pmatrix}0\\1\end{pmatrix}\) 就变成了\(\vec{v}_1=\begin{pmatrix}1\\0\end{pmatrix}\)。所以
\[A=[T\vec{v}_1 \ T\vec{v}_2]=\begin{pmatrix}0&1\\ 1&0\end{pmatrix}\]

例2:假设 \(\mathbb{R}^2\) 的一个线性变换 \(T\) 定义为将平面上的点以直线 \(y=2x\) 作反射,求 \(T\) 所对就的矩阵 \(A\).

这个问题麻烦些,因为我们不能直接计算出 \(T\vec{v}_1\) 和 \(T\vec{v}_2\),但我们可以用间接的方式算出 \(A\)。

解:既然是以 \(y=2x\) 作反射轴,那么这条线上的所有的点是不变的。我们不妨选取点 \((1,2)\),那么 \(T \begin{pmatrix}1 \\ 2 \end{pmatrix} = \begin{pmatrix}1 \\ 2\end{pmatrix}\)。

但是 \(\begin{pmatrix}1\\2\end{pmatrix}=\vec{v}_1+2\vec{v}_2\), 由线性变换的性质,\(T(\vec{v}_1+2\vec{v}_2)=T\vec{v}_1+2T\vec{v}_2=\begin{pmatrix}1\\2\end{pmatrix}\)

另外,我们通过原点作垂直于\(y=2x\) 的直线。由直线垂直的性质,我们作出来的这条直线具有方程 \(y=-\frac{1}{2}x\)。这条直线上所有的点,都变成以原点为对称点的点。我们不妨选取点 \((-2,1)\),这个点变成 \((2,-1)\)。也就是说
\[T\begin{pmatrix}-2\\1\end{pmatrix}=\begin{pmatrix}2\\-1\end{pmatrix}\]
同样的道理, \(\begin{pmatrix}-2\\1\end{pmatrix}=-2\vec{v}_1+\vec{v}_2\),\(T(-2\vec{v}_1+\vec{v}_2)=-2T\vec{v}_1+T\vec{v}_2=\begin{pmatrix}2\\-1\end{pmatrix}\).

所以我们得到了两个方程,
\[\begin{cases}
T\vec{v}_1+2T\vec{v}_2=\begin{pmatrix}1\\2\end{pmatrix}\\
-2T\vec{v}_1+T\vec{v}_2=\begin{pmatrix}2\\-1\end{pmatrix}
\end{cases}\]

将 \(T\vec{v}_1\) 和 \(T\vec{v}_2\) 看成未知数,求解上述方程,我们得到解
\[
T\vec{v}_1=\begin{pmatrix}-\frac{3}{5}\\ \frac{4}{5}\end{pmatrix}, \quad
T\vec{v}_2=\begin{pmatrix}\frac{4}{5}\\ \frac{3}{5}\end{pmatrix}
\]

所以
\[A=\begin{pmatrix}
-\frac{3}{5}& \frac{4}{5}\\
\frac{4}{5}&\frac{3}{5}
\end{pmatrix}\]

分离变量法 I: 齐次方程,齐次边界条件

分离变量法是求解偏微分方程的一种基本方法。它的思想是:假设未知函数 \(u(x,t)\) 是两个各自依赖于变量 \(x\) 和变量 \(t\) 的函数 \(X(x), T(t)\) 的乘积, \(u(x,t)=X(x)T(t)\), 从而可以将偏微分方程简化成两个独立的常微分方程,然后利用常微分方程的理论与求解方法,来求出偏微方程的解的一种方法。这种方法一般用于求解热方程与波动方程的初边值问题与拉普拉斯(Laplace)方程的边值问题。

这一篇文章,我们详细讲解分离变量法来求解偏微分方程的的思想与步骤。热方程与波动方程里最简单的情形就是带齐次边界条件的齐次方程。我们用带齐次边界条件的热方程来说明个方法。

例:求解热方程
\[\begin{cases}
u_{t}-a^2u_{xx}=0,\quad & 0\le x\le L, t\geq 0 \\
u(0,t)=0, u(L,t)=0,&t\geq 0\\
u(x,0)=x,& 0\leq x\leq L
\end{cases}\]

我们现在详细讲解求解的步骤。

第一步,假设方程的解具有形式 \(u(x,t)=X(x)T(t)\),将它代入原方程,我们得到
\[T'(t)X(x)-a^2T(t)X^{\prime\prime}(x)=0\]
两边同除以 \(a^2X(x)T(t)\),方程变为
\[\frac{T'(t)}{a^2T(t)}=\frac{X^{\prime\prime}(x)}{X(x)}\]
因为左边只跟 \(t\) 有关, 右边只跟 \(x\) 有关,要使得它们相等,只有两边都是常数。我们用 \(-\lambda\) 来表示这个常数(参见 Sturm-Liouville 定理了解为什么是负号)。也就是
\[\frac{T'(t)}{a^2T(t)}=\frac{X^{\prime\prime}(x)}{X(x)}=-\lambda\]
从而得到了两个方程
\[\begin{array}{l}
X^{\prime\prime}(x)+\lambda X(x)=0\\
T'(t)+a^2\lambda T(t)=0
\end{array}\]

因为原方程的边界条件 \(u(0,t)=0, u(L,t)=0\) 对所有的 \(t\) 成立,所以只可能 \(X(0)=0, X(L)=0\)。所以函数 \(X(x)\) 满足下列方程
\[\begin{cases}
X^{\prime\prime}(x)+\lambda X(x)=0, 0\le x\le L\\
X(0)=0, X(L)=0
\end{cases}\]

第二步,求解 \(X(x)\)。由二阶常系数微分方程的解的理论,我们知道,这个方程的特征方程为
\[r^2+\lambda=0\]
其特征方程的根为
\[r_{1,2}=\pm\sqrt{-\lambda}\]

依据 \(\lambda\) 的符号,我们分几种情况讨论。

情形1: \(\lambda< 0\)。我们不妨设 \(\mu=\sqrt{-\lambda}>0\),那么方程的通角为
\[X(x)=C_1e^{\mu x}+C_2e^{-\mu x}\]
重新定义 \(C_1,C_2\)后,方程的通解可以写成
\[X(x)=C_1\sinh(\mu x)+C_2\cosh(\mu x)\]

由方程的边界条件,\(X(0)=0\),我们得到 \(C_2=0\),再由边界条件\(X(L)=0\),我们得到 \(C_2=0\)。所以方程的解只有零解。也就是说,\(\lambda\)不可能小于\(0\)。

情形2:\(\lambda=0\)。在这种情形下,方程变为 \(X”(x)=0\),积分两次,得到方程的通解为
\[X(x)=C_1x+C_2.\]
由边界条件,\(X(0)=0\)得到 \(C_2=0\),再由边界条件 \(X(L)=0\) 得到 \(C_1=0\)。所以方程的解只有零解。也就是说,\(\lambda\)也不可能等于\(0\)。

情形3:\(\lambda>0\)。这时候我们设设 \(\mu=\sqrt{\lambda}>0\)。\(r_{1,2}=\pm \mu i\),所以方程的通解为
\[X(x)=C_1\cos(\mu x)+C_2\sin(\mu x)\]
由边界条件\(X(0)=0\)得到 \(C_2=0\)。由边界条件\(X(L)=0\) 得到 \(C_1\sin(\mu L)=0\)。这个方程有解
\[\mu=\frac{n\pi}{L}, n=1,2,\cdots\]
也就是说 \(\lambda=(\frac{n\pi}{L})^2, n=1,2,\cdots\)。我们记
\[X_n=\sin(\frac{n\pi x}{L}),\]
它是方程的
\[\begin{cases}
X”(x)+\lambda X(x)=0, 0\le x\le L\\
X(0)=0, X(L)=0
\end{cases}\]
的解。称之为特征函数,而\(\lambda=(\frac{n\pi}{L})^2, n=1,2,\cdots\)称之为对应的特征值。

第三步,将 \(\lambda=(\frac{n\pi}{L})^2, n=1,2,\cdots\) 代入方程
\[T'(t)+a^2\lambda T(t)=0\]
可以得到方程
\[T'(t)+a^2(\frac{n\pi}{L})^2 T(t)=0\]
其解为
\[T_n(t)=A_ne^{-\frac{a^2n^2\pi^2}{L^2}t}\]
所以
\[u_n=T_n(t)X_n(x)=A_ne^{-\frac{a^2n^2\pi^2}{L^2}t}\sin(\frac{n\pi x}{L}),n=1,2,\cdots\]
都是原方程的一个解。

第四步,由叠加原理,原方程的通解为
\[u(x,t)=\sum_{n=1}^{\infty}u_n=\sum_{n=1}^{\infty}A_ne^{-\frac{a^2n^2\pi^2}{L^2}t}\sin(\frac{n\pi x}{L})\]
由方程的初值条件,\(u(x,0)=f(x)\),
\[f(x)=\sum_{n=1}^{\infty}A_n\sin(\frac{n\pi x}{L})\]
显然,等式的右边就是函数 \(f(x)\) 的 Fourier 正弦级数。\(A_n\) 是是函数 \(f(x)\) 的 Fourier 正弦系数
\[A_n=\frac{2}{L}\int_0^L f(x)\sin(\frac{n\pi x}{L})dx\]

所以初边值问题的解是
\[u(x,t)=\sum_{n=1}^{\infty}u_n=\sum_{n=1}^{\infty}(\frac{2}{L}\int_0^L f(x)\sin(\frac{n\pi x}{L})dx)e^{-\frac{a^2n^2\pi^2}{L^2}t}\sin(\frac{n\pi x}{L})\]

什么是线性相关(linearly dependent)和线性无关(linearly independent)?

在教材里,线性相关的定义是:对于一组向量(vectors)\((\vec{v}_1, \vec{v}_2, \cdots, \vec{v}_n)\),如果存在一组不全为 \(0\) 的数 \(k_1,k_2,\cdots, d_n\),使得 \(k_1\vec{v}_1+k_2\vec{v}_2+\cdots k_n\vec{v}_n=0\) 成立,就称这组向量是线性相关的。 如果只有当\(k_1,k_2,\cdots, d_n\) 全部为 \(0\) 时这个等式成立,那么就称这个向量组是线性无关的。

这个定义读起来比较拗口,也不是太容易理解。我试着来解释一下。一组不全为 \(0\) 的数,意思是至少有一个数不为 \(0\)。也就是说,至少有一个 \(k\) 不等于 \(0\),那么这组向量是线性相关的。那么这意味着什么呢?假如\(k_n\) 不等于 \(0\),那等式 \(k_1\vec{v}_1+k_2\vec{v}_2+\cdots k_n\vec{v}_n=0\) 就等价于
\[k_n\vec{v}_n=-k_1\vec{v}_1-k_2\vec{v}_2-\cdots -k_{n-1}\vec{v}_{n-1}\]
也就是说
\[v_n=-\frac{k_1}{k_n}\vec{v}_1-\frac{k_2}{k_n}\vec{v}_2-\cdots -\frac{k_{n-1}}{k_n}\vec{v}_{n-1}\]
这意味着\(\vec{v}_n\) 可以用其它的向量线性表示。这也是为什么我们说它们之间是线性相关的。

而线性无关就是说,除非\(k_1,k_2,\cdots, d_n\) 全部为 \(0\),否则 \(k_1\vec{v}_1+k_2\vec{v}_2+\cdots k_n\vec{v}_n=0\) 不可能成立。

我们来看两个例子。

例 1: 设 \(\vec{v}_1=\begin{pmatrix}1\\ 0\end{pmatrix}, \vec{v}_2=\begin{pmatrix}0\\ 1\end{pmatrix}, \vec{v}_3=\begin{pmatrix}2\\ -1\end{pmatrix}\),那么 \(-2\vec{v}_1+\vec{v}_2+\vec{v}_3=0\),也就是\(k_1=-2,k_2=1,k_3=1\),所以这组向量是线性相关的。

例2:设 \(\vec{v}_1=\begin{pmatrix}1\\ 0\\0\end{pmatrix}, \vec{v}_2=\begin{pmatrix}0\\ 1\\0\end{pmatrix}, \vec{v}_3=\begin{pmatrix}0\\ 0\\1\end{pmatrix}\),那么 \(k_1\vec{v}_1+k_2\vec{v}_2+k_3\vec{v}_3=\begin{pmatrix}k_1\\ k_2\\k_3\end{pmatrix}\),要使得这个向量等于 \(0\),只能 \(k_1=k_2=k_3=0\),所以这组向量是线性无关的。

什么是Related Rates(相关变化率)?怎么求?

AP Calculus 里面,Related rates 这一部分考得比较多。大学里面的微积分课程,这一部分也经常是考察的重点。 很多同学不能理解这里面的概念,也不知道怎么把它转化成数学问题。 现在我就这一部分进行解答。 那什么是Related rates 呢? 举例来说吧。我们知道圆的面积 \(A=\pi r^2\),如果这个半径是根据时间变化的,那么很显然,面积也根据时间变化。变化率其实就是导数,如果我们知道半径的变化率(就是半径关于时间的导数) \(\frac{dr}{dt}\),那么在某个时刻,面积对于时间的变化率(导数)\(\frac{dA}{dt}\)也就知道了。 从数学的角度来看这个问题,其实就是复合函数的求导法则(Chain Rule)。半径可以看成是时间的函数 \(r=r(t)\),那么面积 \(A(t)=\pi r^2(t)\),由复合函数的求导法则 \(\frac{dA}{dt}=\frac{dA}{dr}\cdot\frac{dr}{dt}=2\pi r \frac{dr}{dt}\)。假如 \(r\) 每秒增加 \(1\) cm, 那么当半径为 \(2\) 的时候的面积的变化率为 \(2\pi \cdot 2\cdot 1=4\pi cm\)。 这种类型的问题,另一个难点是不知道怎么把实际问题转化成数学问题。这就是如何建立数学模型的问题。它的实际困难就是,很多同学并不知道其实变化率就相当于导数。但是从导数的定义就知道,导数就是变化率\(\frac{\Delta y}{\Delta x}\)的极限。当时间间隔足够短的时候,变化率就可以看成是导数。

用递推法求 \(n\) 阶行列式

用递推法来计算行列式的方法是:将行列式按行或者按列展开以后,低阶的行列式具有与原行列式相同的形式。
另外,这种行列式的0元素比较多,因而行列式展开的项并不多,否则计算量大太或者得不到合适的递推式。这样所得到的关于低阶行列式的表达式称之为递推式。在递推关系式的右端出现一个或者几低阶的行列式,然后就按行列式的计算法则计算一阶和二阶行列式的值,而高阶的行列式依次由递推式计算得到。这种方法我们称这为递推法。我们来看两个例子。

例 1: 计算行列式
\[ D_{2 n} = \left|\begin{array}{cccccccc}
a_n & & & & & & & b_n\\
0 & a_{n – 1} & & & & & b_{n – 1} & 0\\
& & \ddots & & &\cdot^{\cdot^{\cdot}} & & \\
& & & a_1 & b_1 & & & \\
& & & c_1 & d_1 & & & \\
& &\cdot^{\cdot^{\cdot}} & & & \ddots & & \\
0 & c_{n – 1} & & & & & d_{n – 1} & 0\\
c_n & & & & & & & d_n
\end{array}\right| \]
我们看到这个行列式,除了四个角的元素外,其它都是0。再看低阶的行列式,如果除去四周的行和列外,低阶的行列式跟原行列式具有相同的形式。那么可以知道这个行列式可以用递推法来求。我们来看怎么用递推法来求这个行列式。

解:将行列式按第一行展开,我们就可以得到
\[\begin{align} D_{2 n} &= a_n \left|\begin{array}{ccccccc}
a_{n – 1} & & & & & b_{n – 1} & 0\\
& \ddots & & & \cdot^{\cdot^{\cdot}} & & \\
& & a_1 & b_1 & & & \\
& & c_1 & d_1 & & & \\
& \cdot^{\cdot^{\cdot}} & & & \ddots & & \\
c_{n – 1} & & & & & d_{n – 1} & \\
0 & & & & & & d_n
\end{array}\right|\\
& + ( – 1)^{1 + 2 n} b_n \left|\begin{array}{ccccccc}
0 & a_{n – 1} & & & & & b_{n – 1}\\
& & \ddots & & & \cdot^{\cdot^{\cdot}} & \\
& & & a_1 & b_1 & & \\
& & & c_1 & d_1 & & \\
& &\cdot^{\cdot^{\cdot}} & & & \ddots & \\
0 & c_{n – 1} & & & & & d_{n – 1}\\
c_n & & & & & & 0
\end{array}\right|,\end{align} \]
再将第一个行列式按最后一列展开,第二个行列式按第一列展开,我们得到
\[\begin{align} D_{2 n} &= a_n d_n \left|\begin{array}{cccccc}
a_{n – 1} & & & & & b_{n – 1}\\
& \ddots & & & \cdot^{\cdot^{\cdot}} & \\
& & a_1 & b_1 & & \\
& & c_1 & d_1 & & \\
&\cdot^{\cdot^{\cdot}} & & & \ddots & \\
c_{n – 1} & & & & & d_{n – 1}
\end{array}\right|\\
& + ( – 1)^{1 + 2 n} ( – 1)^{1 + 2 n – 1} b_n c_n
\left|\begin{array}{cccccc}
a_{n – 1} & & & & & b_{n – 1}\\
& \ddots & & & \cdot^{\cdot^{\cdot}} & \\
& & a_1 & b_1 & & \\
& & c_1 & d_1 & & \\
& \cdot^{\cdot^{\cdot}} & & & \ddots & \\
c_{n – 1} & & & & & d_{n – 1}
\end{array}\right|, \end{align}\]
我们现在看到一、二这两个行列式是相等的。而这两个行列式跟原行列式形式上完全相同。我们记
\[ D_{2 ( n – 1)} = \left|\begin{array}{cccccc}
a_{n – 1} & & & & & b_{n – 1}\\
& \ddots & & & \cdot^{\cdot^{\cdot}} & \\
& & a_1 & b_1 & & \\
& & c_1 & d_1 & & \\
& \cdot^{\cdot^{\cdot}} & & & \ddots & \\
c_{n – 1} & & & & & d_{n – 1}
\end{array}\right|, \]
那么
\[ D_{2 n} = ( a_n d_n – b_n c_n) D_{2 ( n – 1)} . \]
由此式又可能得到
\[ D_{2 ( n – 1)} = ( a_{n – 1} d_{n – 1} – b_{n – 1} c_{n – 1}) D_{2 ( n –
2)}, D_{2 ( n – 2)} = ( a_{n – 2} d_{n – 2} – b_{n – 2} c_{n – 2}) D_{2 ( n
– 3)} \]
等等。最后我们得到
\[ D_{2 n} = ( a_n d_n – b_n c_n) ( a_{n – 1} d_{n – 1} – b_{n – 1} c_{n – 1})
\cdots ( a_2 d_2 – b_2 d_2) D_2, \]
而\(D_2 = a_1 d_1 – b_1 d_1\)。所以最后我们得到了
\[ D_{2 n} = ( a_n d_n – b_n c_n) ( a_{n – 1} d_{n – 1} – b_{n – 1} c_{n – 1})
\cdots ( a_1 d_1 – b_1 d_1) . \]

用Stolz公式求极限

在高等数学这门课里,一般都不讲Stolz定理,但是因为这个定理应用广泛而且非常方便,我觉得有必要讲一讲这个定理。
这个定理的形式很像函数极限的洛必达法则。这个定理有两个等价的形式,我们只叙述我们方便应用的这个形式。
定理: 设有数列\(\{b_n\}_{n=1}^{\infty}\)严格单调增,\(\lim_{n \to \infty}b_n=\infty\),并且极限
\(\lim_{n\to\infty}\frac{a_n-a_{n-1}}{b_n-b_{n-1}}\)存在(可以为无穷大),
那么就有
\[\lim_{n\to\infty}\frac{a_n}{b_n}=\lim_{n\to\infty}\frac{a_n-a_{n-1}}{b_n-b_{n-1}}.\]

我们来看两个例子:
(1)求极限
\[\lim_{n\to\infty}\frac{a^n}{n}\quad (a>1)\]
(2)设\(\lim_{n\to \infty}a_n=A\),求极限
\[\lim_{n\to\infty}\frac{a_1+a_2+\cdots+a_n}{n}\]

这两个例子,分母都是\(n\),很显然是单调增加而且极限为无穷大,符合定理的条件。
(1)由定理可知
\[ \lim_{n\to\infty}\frac{a^n}{n}=\lim_{n\to\infty}\frac{a^n-a^{n-1}}{n-(n-1)}=\lim_{n\to\infty}(a^n-a^{n-1})=\lim_{n\to\infty}(a^n(1-\frac{1}{a})=\infty\]

(2)设\(x_n=a_1+a_2+\cdots+a^n\),那么
\[\lim_{n\to\infty}\frac{a_1+a_2+\cdots+a_n}{n}=\lim_{n\to\infty}\frac{x_n}{n}=\lim_{n\to\infty}(x_n-x_{n-1})=\lim_{n\to\infty}a_n=A\]