Blog

怎么求矩阵方程?

求解矩阵方程,很像解一个一元一次方程,第一步就要”合并同类项”,将未知矩阵放在一起,然后利用逆矩阵来求解。我们来看例子。

例 1:解矩阵方程\(AB=A+2B\),其中
\[A=\begin{pmatrix}
0&3&3\\
1&1&0\\
-1&2&3
\end{pmatrix}.\]

我们看到,两边都有\(B\),那第一步就是将要求的\(B\)放在一起。为此,我们将右边的\(2B\)移到左边,然后求\(A-2E\)的逆矩阵就可以得到\(B\)了。我们来看完整的过程。

解: 将方程右边的2B移到左边,方程变成了
\[AB-2B=A \rightarrow (A-2E)B=A.\]
所以,只要\(A-2E\)可逆,方程的解就是
\[B=(A-2E)^{-1}A.\]

现在我们来求\(A-2E\)的逆矩阵。首先,我们要证明其可逆。
\[|A-2E|=\begin{vmatrix}
-2&3&3\\
1&-1&0\\
-1&2&1
\end{vmatrix}=
\begin{vmatrix}
1&-3&0\\
1&-1&0\\
-1&2&1
\end{vmatrix}=2\ne0\]
所以\(A-2E\)可逆。现在我们来求它的逆。

我们教材上讲了两种求逆矩阵的方法,一种是伴随矩阵的方法,另一种是初等变换法。不要傻傻地去用伴随矩阵来求逆矩阵,费力又不讨好。虽然那是最开始讲的一种方法。

求逆矩阵最简便的方法是用初等变换法。现在我们就用它来求\(A-2E\)的逆矩阵。
\[\begin{align}(A-2E,E)&=\begin{pmatrix}
-2&3&3&\vdots& 1&0&0\\
1&-1&0&\vdots& 0&1&0\\
-1&2&1&\vdots &0&0&1
\end{pmatrix}\\
&\stackrel{r1 + r3 \times -3}{\sim}
\begin{pmatrix}
1&-3&0&\vdots& 1&0&-3\\
1&-1&0&\vdots& 0&1&0\\
-1&2&1&\vdots &0&0&1
\end{pmatrix}\\
&\stackrel{\stackrel{r3+r1}{\scriptsize{r2-r1}}}{\sim}
\begin{pmatrix}
1&-3&0&\vdots& 1&0&-3\\
0&2&0&\vdots& -1&1&3\\
0&-1&1&\vdots &1&0&-2
\end{pmatrix}\\
&\stackrel{r2\times \frac{1}{2}}{\sim}
\begin{pmatrix}
1&-3&0&\vdots& 1&0&-3\\
0&1&0&\vdots& -\frac{1}{2}&\frac{1}{2}&\frac{3}{2}\\
0&-1&1&\vdots &1&0&-2
\end{pmatrix}\\
&\stackrel{\stackrel{r1+r2\times 3}{\scriptsize{r3+r2}}}{\sim}
\begin{pmatrix}
1&0&0&\vdots& -\frac{1}{2}&\frac{3}{2}&\frac{3}{2}\\
0&1&0&\vdots& -\frac{1}{2}&\frac{1}{2}&\frac{3}{2}\\
0&0&1&\vdots &\frac{1}{2}&\frac{1}{2}&-\frac{1}{2}
\end{pmatrix}
\end{align}\]

所以
\[(A-2E)^{-1}=
\begin{pmatrix}
-\frac{1}{2}&\frac{3}{2}&\frac{3}{2}\\
-\frac{1}{2}&\frac{1}{2}&\frac{3}{2}\\
\frac{1}{2}&\frac{1}{2}&-\frac{1}{2}
\end{pmatrix}\]

将它乘在\(A\)的左边,就得到了\(B\):
\[\begin{align}B=(A-2E)^{-1}A&=
\begin{pmatrix}
-\frac{1}{2}&\frac{3}{2}&\frac{3}{2}\\
-\frac{1}{2}&\frac{1}{2}&\frac{3}{2}\\
\frac{1}{2}&\frac{1}{2}&-\frac{1}{2}
\end{pmatrix}
\begin{pmatrix}
0&3&3\\
1&1&0\\
-1&2&3
\end{pmatrix}\\
&=\begin{pmatrix}
0&3&3\\
-1&2&3\\
1&1&0
\end{pmatrix}
\end{align}\]

幂指函数及其极限与导数

幂指函数,看起来就是这样的函数 \(f(x)^{g(x)}\), 函数既像幂函数,又像指数函数,它的底和指数都是函数。它在高数里面出现的频率是比较高的,特别是求极限和求导数的时候。对于这样的函数,最常见的错误就是求导的时候,把它当成幂函数的复合函数,或者普通的指数函数的复合函数来求导。这类函数的极限也是这门课的一个难点,很多同学见到这类函数的极限往往不知所措。这篇文章就对这种函数的相关问题做一个详细的剖析。

幂指函数的定义域:同指数函数一样,幂指函数要求它的底是正数,否则,函数可能就没有意义。例如,当 \(x<0\) 时,函数 \(x^x\) 就没什么意义。所以对于幂指函数来说,\(f(x)>0\),再加上 \(g(x)\) 和 \(f(x)\) 的定义域,幂指函数的定义域是这三个数集的交集。严格来说,如果设 \(f(x)\) 的定义域为 \(U_1\),\(g(x)\) 的定义域为 \(U_2\),\(V=\{x\in R : f(x)>0\}\) ,则幂指函数 \((f(x)^{g(x)}\) 的定义域是 \(U=U_1\cap U_2 \cap V\)

幂指函数的复合规则: 幂指函数是复合函数吗?答案是它是复合函数。 但它的复合规则不是由指数函数与幂函数的复合,也不是幂函数与指数函数的复合。那它是由什么样的函数,通过什么样的规则复合而成的呢?

我们先来对它进行变形, 先对它取对数,再取 \(e\) 底,那么 \(f(x)^{g(x)}=e^{g(x)\ln f(x)}\)。这样,问题就简单多了,我们可以认为它是由指数函数 \(e^u\) 和函数 \(g(x)\ln f(x)\) 复合而成的函数。这就是幂指函数的复合规则。

有了它的复合规则以后,幂指函数的极限与导数就变得容易多了。

幂指函数的极限: 如果 \(\lim_{x\to a}f(x)=A, \lim_{x\to a}g(x)=B\),且 \(A,B\) 都是常数并且不同时为 \(0\), 则 \(\lim_{x\to a}f(x)^{g(x)}=A^B \)。这个可以用复合函数的极限运算法则得到。 因为 \(\lim_{x\to a}f(x)^{g(x)} = e^{\lim_{x\to a}g(x)\ln f(x)} = e^{B\ln A}= A^B\)。

如果极限 \(\lim_{x\to a}f(x)^{g(x)}\) 是未定式极限,就是它是 \(0^0, 1^{\infty}\) 型或者 \(\infty^0\) 型中的一种。这时候的通常做法是将极限 \(\lim_{x\to a}f(x)^{g(x)}\) 化成 \(e^{\lim_{x\to a}g(x)\ln f(x)}\) 的形式,接着将指数部分化成形式 \(\displaystyle\lim_{x\to a}\frac{\ln f(x)}{\frac{1}{g(x)}}\)。这时候,指数部分的极限就成了两类基本的未定式极限 \(\frac{0}{0}\) 型或者 \(\frac{\infty}{\infty}\) 型,然后用洛必达法则可以求出极限指数部分的极限了。

对于 \(1^{\infty}\) 型的极限,还可以通过将它变形,运用第二个重要极限来求得它的极限。

幂指函数的导数:在教材里,幂指函数的导数一般是用对数求导法来求,而对数求导法是通过隐函数求导法得到的。那么知道了幂指函数的复合规则后,我们完全可以使用我们所熟悉的复合函数求导法则来求它的导数。我们来看怎么做。

设 \(F(x)=f(x)^{g(x)}\), 那么因为 \(f(x)^{g(x)}=e^{g(x)\ln f(x)}\), 所以可以设 \(u=g(x)\ln f(x)\),从而 \(F(x)\) 是函数 \(G(u)=e^u\) 和函数 \(u=g(x)\ln f(x)\) 复合得到。从而由复合函数的求导公式
\[F'(x)=G'(u) u'(x) = e^u \left(g'(x)\ln f(x)+\frac{g(x)f'(x)}{f(x)}\right)\]

将 \(u\) 回代,就得到了
\[F'(x)=G'(u) u'(x) = f(x)^{g(x)} \left(g'(x)\ln f(x)+\frac{g(x)f'(x)}{f(x)}\right)\]

如果熟悉了,可以直接这么求
\[
\begin{align}
\left(f(x)^{g(x)}\right)’&=\left(e^{g(x)\ln f(x)}\right)’ \\
&= e^{g(x)\ln f(x)} (g(x)\ln f(x))’ \\
&= f(x)^{g(x)}\left(g'(x)\ln f(x)+\frac{g(x)f'(x)}{f(x)}\right)
\end{align}\]

怎么寻找函数的渐近线(Asymptotes)?

我们给出函数几种渐近线的定义以及求法。

这个问题,对于大多数同学来讲,不是什么大的困难。毕竟,它的定义还是比较好理解,而且有了极限的基础以后,计算也不是什么难题。但有时候,有同学对于怎么寻找斜渐近线会有一些困难,不会求斜渐近线的表达式。

我们还是简单回顾一下三类渐近线的定义:

  1. 如果 \(\lim_{x\to x_0}f(x)=\infty\),则称直线 \(x=x_0\) 是函数 \(f(X)\) 的垂直渐近线,或者铅直渐近线;
  2. 如果 \(\lim_{x\to \infty}f(x)=A\) 或者 \(\lim_{x\to -\infty}f(x)=A\),则称直线 \(y=A\) 是函数 \(f(x)\) 的水平渐近线。注意这里要分两个无穷大方向;
  3. 如果 \(\lim_{x\to \infty}f(x)-ax-b=0\) 或者 \(\lim_{x\to -\infty}f(x)-ax-b=0\),则称直线 \(y=ax+b\) 是函数 \(f(x)\) 的斜渐近线。注意这里也要分两个无穷大方向。

我们在画函数的图形的时候,需要确定函数的渐近线。 那么现在我们来看一下怎么寻找函数的渐近线吧。

寻找渐近线的步骤是:先找垂直渐近线,再找水平渐近线,最后找斜渐近线。一个函数可能没有渐近线,也有可能三类渐近线都有。

  1. 垂直渐近线:垂直渐近线只可能在函数不连续的点处出现。这是为什么?因为从连续函数的性质知道,闭区间的连续函数有界,所以如果是连续的话,它的每一点的极限都是有限的(我们可以选一个很小的包含这点的连续区间)。
    找到不连续的点后,再在这点求极限。如果左右极限有一个趋于无穷大,那么这点处就有垂直渐近线。
  2. 水平渐近线:确定垂直渐近线后,就开始寻找水平渐近线。分别令 \(x\) 趋近于正、负无穷大,如果极限存在(不包括无穷大,无穷大是极限不存在的一种),那么就有水平渐近线;
  3. 斜渐近线:如果一个方向有水平渐近线,就不会有斜渐近线。也就是说,一个方向有水平渐近线,就不用找斜渐近线了(为什么?)。 如果没有水平渐近线,就来确定有没有斜渐近线。
    找斜渐近线的方式为: 先求极限 \(\lim_{x\to\infty}\frac{f(x)}{x}\),如果极限存在,值为 \(a\),则可确定有斜渐近线。接着,求极限 \(\lim_{x\to\infty}\frac{f(x)}{x}-ax\),如果极限为 \(b\),则斜渐近线的方程为 \(y=ax+b\)。

行列式(determinant)的计算技巧

对于阶数不高的,一般的数字行列式,最方便有效的计算方式是降阶法,或者说是初等变换+行列式展开。另外,将行列式化成三角形也是常用的一个方法。有些数字行列式具有一定的规律,我们可以利用这些规律来较快速地计算出它的值。

对于阶数不高的,一般的数字行列式,最方便有效的计算方式是降阶法,或者说是初等变换+行列式展开。另外,将行列式化成三角形也是常用的一个方法。有些数字行列式具有一定的规律,我们可以利用这些规律来较快速地计算出它的值。

我们来看一些常见的数字行列式的例子。

例:计算行列式
\[\begin{vmatrix}
1&2&3&4\\
2&3&4&1\\
3&4&1&2\\
4&1&2&3
\end{vmatrix}\]
这个行列式,直接用降阶法,或者用化成三角形的方式,计算量较大。但是这个行列式有一些规律我们可以利用。我们看到,每一行或者每一列的元素都是一样的,只是排列顺序不同。或者可以这样说,它们的和都是相同的数字。所以对这个行列式,我们可以将所有的行(或者列)加到同一行(列)去,然后提出一个因子,再做初等变换,就容易多了。我们来看它的解法。

解:将行列式所有的列加到第一列去,我们得到了
\[\begin{vmatrix}
1&2&3&4\\
2&3&4&1\\
3&4&1&2\\
4&1&2&3
\end{vmatrix}=
\begin{vmatrix}
10&2&3&4\\
10&3&4&1\\
10&4&1&2\\
10&1&2&3
\end{vmatrix}\]
将第一列提出因子10, 然后将每一行减去第一行,我们得到了
\[
\begin{vmatrix}
10&2&3&4\\
10&3&4&1\\
10&4&1&2\\
10&1&2&3
\end{vmatrix}=
10\begin{vmatrix}
1&2&3&4\\
1&3&4&1\\
1&4&1&2\\
1&1&2&3
\end{vmatrix}=
10\begin{vmatrix}
1&2&3&4\\
0&1&1&-3\\
0&2&-2&-2\\
0&-1&-1&-1
\end{vmatrix}\]
按第一行展开,然后将第一行加到第三行,乘以\(-2\)加到第二行,得到了
\[10\begin{vmatrix}
1&1&-3\\
2&-2&-2\\
-1&-1&-1
\end{vmatrix}=
10\begin{vmatrix}
1&1&-3\\
0&-4&4\\
0&0&-4
\end{vmatrix}=160\]

用初等变换法求\(n\)阶行列式(determinant)

求行列式最简单有效、也是应用最广的方法是初等变换法。所谓初等变换,就是下列三种行列式的运算:

  • 交换两行(列)
  • 将某一行(列)乘上一个常数
  • 将某一行(列)乘上一个常数加到另一行(列)去

通过这种运算,我们可以将行列式化成三角形,或者将某一行或者列化成只有一个非0 ,然后再按该行或列展开,从而达到降阶的目的。我们用几个例子来说明这种方法。

例:求行列式的值
\[|A|=\begin{vmatrix}
1&2&3&\cdots&n-1&n\\
2&3&4&\cdots&n&1\\
3&4&5&\cdots&1&2\\
\vdots&\vdots &\vdots & &\vdots &\vdots\\
n&1&2&\cdots&n-2&n-1
\end{vmatrix}\]

这里我们看到,每一行或者每一列的元素都相同,只是排列顺序不同。这种情形,我们可以将所有的行或列加到同一行或列去,然后再提出一个因子,情形就会变得简单些了。该行(列)的元素就全部变成了1, 然后通过减法,就可以将该行或列化成只有一个非0. 我们来看它的解法。

解:将所有的列加到第一列去,然后提出因子\(\displaystyle\sum_{i=1}^n i=\frac{(n+1)n}{2}\), 行列式变成
\[|A|=\frac{(n+1)n}{2}\begin{vmatrix}
1&2&3&\cdots&n-1&n\\
1&3&4&\cdots&n&1\\
1&4&5&\cdots&1&2\\
\vdots&\vdots &\vdots & &\vdots &\vdots\\
1&1&2&\cdots&n-2&n-1
\end{vmatrix}\]

从最后一行开始,依次减去前一行,我们可以得到
\[|A|=\frac{(n+1)n}{2}\begin{vmatrix}
1&2&3&\cdots&n-1&n\\
0&1&1&\cdots&1&1-n\\
0&1&1&\cdots&1-n&1\\
\vdots&\vdots &\vdots & &\vdots &\vdots\\
0&1-n&1&\cdots&1&1
\end{vmatrix}\]

全部减去第二行,行列式变成了
\[|A|=\frac{(n+1)n}{2}\begin{vmatrix}
1&2&3&\cdots&n-1&n\\
0&1&1&\cdots&1&1-n\\
0&0&0&\cdots&-n&n\\
\vdots&\vdots &\vdots & &\vdots &\vdots\\
0&-n&0&\cdots&0&n
\end{vmatrix}\]

最后一列依次加上\(2,3,… ,n-1\) 列,得到
\[|A|=\frac{(n+1)n}{2}\begin{vmatrix}
1&2&3&\cdots&n-1&n-\frac{n(n-1)}{2}\\
0&1&1&\cdots&1&-1\\
0&0&0&\cdots&-n&0\\
\vdots&\vdots &\vdots & &\vdots &\vdots\\
0&-n&0&\cdots&0&0
\end{vmatrix}\]

先按第一行展开,再按最后一列展开,可以得到
\[|A|=\frac{(n+1)n}{2}(-1)^{n+1}\begin{vmatrix}
0&0&\cdots&-n\\
\vdots &\vdots & &\vdots \\
0&-n& &0\\
-n&0&\cdots&0
\end{vmatrix}
\]

每一列乘以(-1), 则
\[|A|=
(-1)^{n+1}(-1)^{n-2}\frac{(n+1)n}{2}\begin{vmatrix}
0&0&\cdots&n\\
\vdots &\vdots & &\vdots \\
0&n& &0\\
n&0&\cdots&0
\end{vmatrix}
\]

现在只要利用行列式的定义, 就可以得到结果了. 这个行列式只有一项, 这一项就是 \(a_{1,n-2}a_{2,n-3}\cdots a_{n-2,1}=n^{n-2}\),它的逆序数为\(\sum_{i=1}^{n-3}i=\frac{(n-2)(n-3)}{2}\), 所以它的符号是\((-1)^{\frac{(n-2)(n-3)}{2}}\). 最后我们得到行列式的值是
\[|A|=\displaystyle (-1)^{\frac{(n-2)(n-3)}{2}+1}\frac{(n+1)n^{n-1}}{2}\]

怎么求矩阵的特征值(Eigenvalue)

方阵的特征值的计算历来是线性代数课程里较难掌握的一部分。它不仅涉及到带字母的行列式的计算,还包含了多项的求根的过程。现在我们来看看矩阵特征值的求法。

例 :求矩阵
\[A=\begin{pmatrix}
1&-2&4\\
2&3&1\\
1&1&1
\end{pmatrix}\]
的特征值.

求方阵\(A\)的特征值, 就是求多项式 \(|A-\lambda I|\) 的根. 它的基本步骤是这样的:

  1. 求出行列式 \(|A-\lambda I|\) , 它是一个关于 \(\lambda\) 的多项式 (就是特征多项式);
  2. 令多项式 \(|A-\lambda I |\) = 0, 求出 \(\lambda\) 的值 (就是特征值, 或者特征根)

现在我们来看这个题的完整的解法.

解:\(A\) 的特征多项式为
\[|A-\lambda I|=\begin{vmatrix}
1-\lambda&-2&4\\
2&3-\lambda&1\\
1&1&1-\lambda
\end{vmatrix}\]

先交换1, 3 两行,再将第一行乘以 \(-2\) 加到第二行, 乘以 \(\lambda-1\)加到第三行, 再对第一列展开, 就得到
\[\begin{align}|A-\lambda I|&=\begin{vmatrix}
1-\lambda&-2&4\\
2&3-\lambda&1\\
1&1&1-\lambda
\end{vmatrix}\\
&=-\begin{vmatrix}
1&1&1-\lambda\\
0&1-\lambda&-1+2\lambda\\
0&-3+\lambda&4-(1-\lambda)^2
\end{vmatrix}\\
&=-\begin{vmatrix}
1-\lambda&-1+2\lambda\\
-3+\lambda&4-(1-\lambda)^2
\end{vmatrix}
\end{align}\]

把第一列提出因子\(-1\), 并将第2 行第2 列的元素展开,可得
\[|A-\lambda I|=
\begin{vmatrix}
\lambda-1&-1+2\lambda\\
-\lambda+3&(1+\lambda)(3-\lambda)
\end{vmatrix}=
(3-\lambda)\begin{vmatrix}
\lambda-1&-1+2\lambda\\
1&1+\lambda
\end{vmatrix}=(\lambda-3)(-\lambda)(\lambda-2).
\]

令\(|A-\lambda I|=0\), 就得到了方阵\(A\) 的特征值为 \(\lambda_1=3, \lambda_2=0, \lambda_3=2\)

线性代数(Linear Algebra)怎么学

  1. 线性代数的基本计算技巧是初等(行)变换(row reduction),离开了这个技巧,计算基本上不能进行。需要用到的地方太多了,基本上贯穿了整个课程。例如解线性方程组,求逆矩阵,求特征向量,判定向量组的线性相关性等等。

    初等变换的基本技术有两点:其一、按列进行,先将第一列除第一个数字外,全部化成零。然后第二列,第三列等等进行。其二,每次找个最简单的数字的行做为基本行,进行变换。当然最简单的数学莫过于 \(1\) 了。

  2. 线性代数的基本理论是线性方程组的理论。它是其它理论的基础。例如可以用它来判定向量组的线性相关性,可以用来求特征向量,可以用来判定矩阵是否可逆,可以确定一个向量是不是其它向量的线性组合等等。

    线性方程组的基本理论有两个方面,解的结构和求解方法。求解方法就是高斯消元法,也就是初等变换的方法。、、

    而解的结构,又有两个方面。齐次方程 \(A{\vec x}=0\) 和非齐次方程 \(A{\vec x}={\vec b}\)。

    齐次方程:

    1. 方程组有非零解的充分必要条件是 \(\text {Rank} (A) < n\) 。其中 \(\text {Rank} (A)\) 可以简单地认为是行变换后,阶梯形(REF)矩阵中非零行的行数。\(n\) 是方程中未知元的个数。
    2. 齐次方程组只有零解的条件是 \(\text {Rank} (A) = n\)

    非齐次方程:

    1. 方程组无解的条件是 \(\text {Rank} (A) < \text {Rank} (A,{\vec b})\)
    2. 方程组有唯一解的条件是 \(\text {Rank} (A) = \text {Rank} (A,{\vec b}) = n\)
    3. 方程组有无穷多个解的条件是 \(\text {Rank} (A) = \text {Rank} (A,{\vec b}) < n\)
    4. 方程组的通解为 \({\vec x}={\vec x_h}+{\vec \eta}\),其中 \(\vec x_h\) 是 \(A{\vec x}=0\) 的通解,\(\vec \eta\) 是非齐次方程 \(A{\vec x}={\vec b}\) 的一个(特)解。
  3. 第二个计算技巧是行列式(determinant) 的计算。在计算特征值的时候,一定会用到行列式的计算。另外,还可以用行列来判定矩阵是否可逆,向量组是否相关,还可以判定方程组有解、无解或者有无穷多个解等等。
  4. 线性方程组应用比较多的方面是特征值与特征向量,这个一定要会。在矩阵的对角化,解常微分方程组,随机过程等等方面都有应用。这部分的内容的计算,都是应用行列式和方程组的计算。

函数展开成幂级数的方法总结

函数展开成幂级数的方法有直接展开和间接展开法。一般的情形是,利用已知函数的级数展开式,采用变量代换、逐项积分与逐项微分等方法间接展开。

函数展开成幂级数的一般方法是;

  1. 直接展开;对函数求各阶导数,然后求各阶导数在指定点的值,从而求得幂级数的各个系数。
  2. 通过变量代换来利用已知的函数展开式;例如 \(\sin2x\) 的展开式就可以通过将 \(\sin x \) 的展开式里的 \(x\) 全部换成 \(2x\) 而得到。我们已知 \(\displaystyle\sin x=\sum_{n=0}^{\infty}(-1)^n\frac{x^{2n+1}}{(2n+1)!}, \forall x\in R\), 从而 \(\displaystyle\sin2x=\sum_{n=0}^{\infty}(-1)^n\frac{(2x)^{2n+1}}{(2n+1)!}, \forall x\in R\).
  3. 通过变形来利用已知的函数展开式;例如要将 \(\displaystyle \frac{1}{1+x}\) 展开成 \(x-1\) 的幂级数,我们就可以将函数写成 \(x-1\) 的函数,然后利用 \(\displaystyle \frac{1}{1+x}\) 的幂级数展开式。\(\displaystyle \frac{1}{1+x}=\frac{1}{2+(x-1)}=\frac{1}{2}\cdot\frac{1}{1+\frac{x-1}{2}}\),而 \(\displaystyle\frac{1}{1+\frac{x-1}{2}}=\sum_{n=0}^{\infty}(-1)^n(\frac{x-1}{2})^n\),从而 \(\displaystyle \frac{1}{1+x}=\sum_{n=0}^{\infty}(-1)^n\frac{(x-1)^n}{2^{n+1}}\)
  4. 通过逐项求导、逐项积分已知的函数展开式;例如 \(\displaystyle \cosh x= (\sinh x)’\),它的幂级数展开式就可以通过将\(\sinh x\) 的展开式逐项求导得到。需要注意的是,逐项积分法来求幂级数展开式,会有一个常数出现,这个常数是需要我们确定的。确定的方法就是通过在展开点对函数与展开式取值,令两边相等,就得到了常数的值。
  5. 利用级数的四则运算。例如 \(\displaystyle\sinh x= \frac{e^x-e^{-x}}{2}\),而 \(\displaystyle e^x=\sum_{n=0}^{\infty}\frac{x^n}{n!}, e^{-x}=\sum_{n=0}^{\infty}\frac{(-1)^nx^n}{n!}\),所以 \(\displaystyle\sinh x=\frac{1}{2}\sum_{n=0}^{\infty}\frac{x^n}{n!}-\frac{1}{2}\sum_{n=0}^{\infty}\frac{(-1)^nx^n}{n!}=\sum_{n=1}^{\infty}\frac{x^{2n-1}}{(2n-1)!}, \forall x\in R\)

几个常用的已知函数的展开式:

  1. \(\displaystyle\sin x=\sum_{n=0}^{\infty}(-1)^n\frac{x^{2n+1}}{(2n+1)!}, \forall x\in R\)
  2. \(\displaystyle\cos x=\sum_{n=0}^{\infty}(-1)^n\frac{x^{2n}}{(2n)!}, \forall x\in R\)
  3. \(\displaystyle e^x=\sum_{n=0}^{\infty}\frac{x^n}{n!}, \forall x\in R\)
  4. \(\displaystyle\frac{1}{1-x}=\sum_{n=0}^{\infty}x^n, \forall x\in (-1,1)\)
  5. \(\displaystyle\frac{1}{1+x}=\sum_{n=0}^{\infty}(-1)^nx^n, \forall x\in (-1,1) \)
  6. \(\displaystyle\ln(1-x)=\sum_{n=0}^{\infty}\frac{x^n}{n}, \forall x\in (-1,1]\)
  7. \(\displaystyle\ln(1+x)=\sum_{n=0}^{\infty}\frac{(-1)^{n-1}}{n}x^n, \forall x\in (-1,1]\)

怎么找 Column space 和 Null Space (列空间和零空间)

Column space 和 Null space,听起来很难的样子,其实求它们并不算很难的一件事。在做完初等行变换(Row reduction),把矩阵变成行阶梯形(Row reduced form)后,Column space 的 basis 就很容易得到了,而求零空间,其实就是求齐次方程的解空间。我们来具体讲一下怎么求这两个空间。

因为向量空间(Vector space)完全可以由其基表示,所以只要求出它的基就可以。现在我们讲一讲怎么求列空间的基。只需要两步就可以。
第一步:将矩阵化成行阶梯形(REF)
第二步:找出每一个非零行,第一个非零元(pivot number)所在的列,对应的原矩阵里的列,就是列空间的基( Column space 的 basis)。

我们来看一个例子:设\(A\) 为如下的矩阵
\[
\begin{pmatrix}
1&4&8&-3&-7\\
-1&2&7&3&4\\
-2&2&9&5&5\\
3&6&9&-5&-2
\end{pmatrix}\]

通过初等行变换,它可以变成

\[
\begin{pmatrix}
1&4&8&0&5\\
0&2&5&0&-1\\
0&0&0&1&4\\
0&0&0&0&0
\end{pmatrix}\]

现在已经变成了行阶梯形矩阵了。我们只需要找到每个非零行的首个非零元就知道列空间的基了。第一、二、三行都是非零行,它们的首个非零元在第一、二、四列,所以,列空间的基是原矩阵里的第一、二、四列,也就是说,\(Col A\) 的基由下列三个向量组成:

\[
\begin{pmatrix}
1\\
-1\\
-2\\
3
\end{pmatrix},
\begin{pmatrix}
4\\
2\\
2\\
6\end{pmatrix},
\begin{pmatrix}
-3\\
3\\
5\\
-5
\end{pmatrix}
\]

或者说 \[{\rm Col} A= {\rm span}\left(\begin{pmatrix}
1\\
-1\\
-2\\
3
\end{pmatrix},
\begin{pmatrix}
4\\
2\\
2\\
6\end{pmatrix},
\begin{pmatrix}
-3\\
3\\
5\\
-5
\end{pmatrix}\right)\]

现在我们转到怎么找零空间。由零空间的定义,\(Null A=\{\vec{x}|A\vec{x}=0\}\),所以,找零空间就是解方程组 \(A\vec{x}=0\}\) 。我们仍然以上面的 \(A\) 为例。我们先将它化成行最简形(RREF)
\[
\begin{pmatrix}
1&4&8&0&5\\
0&2&5&0&-1\\
0&0&0&1&4\\
0&0&0&0&0
\end{pmatrix}
\sim
\begin{pmatrix}
1&0&-2&0&-3\\
0&1&\frac{5}{2}&0&-\frac{1}{2}\\
0&0&0&1&4\\
0&0&0&0&0
\end{pmatrix}
\]

它的解是
\[\vec{x}=
C_1\begin{pmatrix}
2\\
-\frac{5}{2}\\
1\\
0\\
0
\end{pmatrix}+C_2
\begin{pmatrix}
3\\
\frac{1}{2}\\
0\\
-4\\
1
\end{pmatrix}
\]

所以零空间是
\[
Null A={\rm span}\left(\begin{pmatrix}
2\\
-\frac{5}{2}\\
1\\
0\\
0
\end{pmatrix},
\begin{pmatrix}
3\\
\frac{1}{2}\\
0\\
-4\\
1
\end{pmatrix}\right)
\]

怎么样求递推形式的极限?

所谓递推式,就是形如\[x_{n+1}=f(x_n,x_{n-1},\cdots, x_0)\]的函数或序列。要求得这种形式的极限并不难,难的在于,我们经常忘记了最重要的一步,那就是,证明极限是存在的。

所谓递推式,就是形如\[x_{n+1}=f(x_n,x_{n-1},\cdots, x_0)\]的函数或序列。遇到这种形式的极限,很多同学就不知道从哪里下手求极限。

其实,要求得这种形式的极限并不难,难的在于,我们经常忘记了最重要的一步,那就是,证明极限是存在的。

我们来看一个例子:
例:设数列\(\{x_n\}\)满足:
\[ 0< x_0 <1, x_{n+1}=x_n(2-x_n),\]
求\(\lim_{n\to \infty}x_n\)。

这里我们看一下这种极限怎么求。假如我们知道这个序列是有极限的,那么,我们知道,\(n\to \infty\)时,\(x_{n+1}\)和\(x_{n}\)都有同样的极限,我们设这个极限为\(A\),那么我们只需要求一个关于\(A\)的一个代数方程,就得到了我们要求的极限。

但这里关键的一步是,我们怎么确定这个序列是有极限的。我们所学的内容里面,有两个极限存在的准则,对这种递推形式的极限,通常能用的是“单调有界数列必有极限”。所以我们要证两件事,一个是序列是单调的,另一个要证明序列是有界的。我们来看看完整的解答过程。

解:假定序列的极限是存在的,设此极限为\(A\),那么:\[\lim_{n\to\infty}x_{n+1}=A, \lim_{n\to\infty}x_{n}=A, \]

所以
\[A=A(2-A),\]

解此方程,可以得到 \(A^2=A\),那么\(A=1\) 或者 \(0\)。具体是 0 还是 1,我们要看我们的其余的证明过程。

现在我们证明这个序列的极限是存在的。因为\(0<x_0<1\),所以\(x_1=x_0(2-x_0)=2x_0-x_0^2\),配方,我们可以得到\(x_1=1-(1-x_0)^2\),所以 \(0<x_1<1\),所以序列是有界的。又因为 \(x_0<1\),所以 \(2-x_0>1\),所以 \(x_0(2-x_0)>x_0\)。我们用归纳法来证明,\(0<x_n<1\) 并且是单调增加的。

现在假设\(0<x_n<1\),那么,\(0<x_{n+1}=x_n(2-x_n)<1\),跟上述证明一样,\(x_{n+1}>x_n\),所以序列是单调增加的。

所以,\(\lim_{n\to\infty}x_n=1\)。(\(A=0\) 舍去,因为 \(x_n>0\))